Applications of nanotechnology in the pavement industry have increased rapidly during the last decade in order to enhance a pavement’s sustainability and durability. Conventional asphalt binder generally does not provide sufficient resistance against rutting at high temperatures. Carbon black nano-particles (CBNPs, produced by perennial mountain trees’ carbonization) were mixed into the performance grade (PG) 58 asphalt binder in this study. Conventional asphalt binder tests (penetration, ductility and softening point), frequency sweep, performance grading, and bitumen bond strength tests were conducted to study the enhancement in the properties of asphalt binder. Dynamic modulus and wheel tracking tests were also performed to investigate the effect of CBNPs on asphalt mixture properties. Experimental results demonstrated that preferred dosage of CBNPs in asphalt is 10% by weight of the bitumen. Results of scanning electron microscopy (SEM) and storage stability tests validated homogenous and stable dispersion of CBNPs in the asphalt binder. Asphalt mixtures became stiffer and resistant to rutting at high temperatures by addition of CBNPs in asphalt binder. Significant improvement in bitumen aggregate bond strength was also observed by incorporating CBNPs. It is concluded that CBNPs can be used to effectively enhance the high-temperature performance and consequently the sustainability of flexible pavements.
With the increase in the demand for bitumen, it has become essential for pavement engineers to ensure that construction of sustainable pavements occurs. For a complete analysis of the pavement, both its structural and functional performances are considered. In this study, a novel material (i.e., Graphene Nano-Platelets (GNPs)) has been used to enhance both of the types of pavements’ performances. Two percentages of GNPs (i.e., 2% and 4% by the weight of the binder) were used for the modification of asphalt binder in order to achieve the desired Performance Grade. GNPs were homogeneously dispersed in the asphalt binder, which was validated by Scanning Electron Microscope (SEM) images and a Hot Storage Stability Test. To analyze the structural performance of the GNPs-doped asphalt, its rheology, resistance to permanent deformation, resistance to moisture damage, and bitumen-aggregate adhesive bond strength were studied. For the analysis of the functional performance, the skid resistance and polishing effect were studied using a British Pendulum Skid Resistance Tester. The results showed that GNPs improved not only the rutting resistance of the pavement but also its durability. The high surface area of GNPs increases the pavement’s bonding strength and makes the asphalt binder stiffer. GNPs also provide nano-texture to the pavement, which enhances its skid resistance. Thus, we can recommend GNPs as an all-around modifier that could improve not only the structural performance but also the functional performance of asphalt pavements.
Conventional binders cannot meet the current performance requirements of asphaltic pavements due to increase in traffic volumes and loads. Nanomaterials, due to their exceptional mechanical properties, are gaining popularity as bitumen modifiers to enhance the performance properties of the asphaltic concrete. Carbon Nanotubes (CNTs) are one of the most widely used nanomaterials because of their strength properties, light weight, small size, and large surface area. CNT addition results in improved substrate characteristics as compared to other modifiers. Due to high length to diameter ratio, dispersion of CNTs in bitumen is a complex phenomenon. In this study, dispersion of CNTs in bitumen was carried out using both dry and wet mixing techniques, the latter was selected on the basis of homogeneity of the resultant asphalt mixture. Scanning Electron Microscopy (SEM) was used to check the dispersion of CNTs in binder while Fourier Transform Infrared Spectroscopy (FTIR) was carried out to ensure the removal of solvent used for wet mixing. Conventional bitumen tests (penetration, softening point, and ductility), dynamic shear rheometer tests, rolling bottle tests, and bitumen bond strength tests were employed to check the improvement in the rheological and adhesion properties of bitumen while wheel tracker test was used to check the improvement in resistance against permanent deformation of asphalt mixtures after addition of CNTs. Results show that CNTs improved the higher temperature performance and permanent deformation resistance in both binder and mixtures. Improvement in bitumen–aggregate adhesion properties and moisture resistance was also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.