COVID 19 pandemic is causing a global health epidemic. The most powerful safety tool is wearing a face mask in public places and everywhere else. The COVID 19 outbreak forced governments around the world to implement lockdowns to deter virus transmission. According to survey reports, wearing a face mask at public places reduces the risk of transmission significantly. In this paper, an IoT-enabled smart door that uses a machine learning model for monitoring body temperature and face mask detection. The proposed model can be used for any shopping mall, hotel, apartment entrance, etc. As an outcome a cost-effective and reliable method of using AI and sensors to build a healthy environment. Evaluation of the proposed framework is done by the Face Mask Detection algorithm using the TensorFlow software library. Besides, the body temperature of the individual is monitored using a non-contact temperature sensor. This proposed system can detect the users from COVID 19 by enabling the Internet of Things (IoT) technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.