Frequency-response analysis (FRA) has been growing in popularity in recent times as a tool to detect mechanical deformation within power transformers. To conduct the test, the transformer has to be taken out of service which may cause interruption to the electricity grid. Moreover, because FRA relies on graphical analysis, it calls for an expert to analyze the results. As so far, there is no standard code for FRA interpretation worldwide. In this paper, a novel online technique is introduced to detect the internal faults within a power transformer by constructing the voltage-current ( ) locus diagram to provide a current state of the transformer. The technique does not call for any special equipment as it uses the existing metering devices attached to any power transformer to monitor the input voltage, output voltage, and the input current at the power frequency and, hence, online monitoring can be realized. Various types of faults have been simulated to assess its impact on the proposed locus. A Matlab code based on digital image processing is developed to calculate any deviation of the locus with respect to the reference one and to identify the type of fault. The proposed technique is easy to be implemented and automated so that the requirement for expert personnel can be eliminated.
This paper proposes enhanced hysteresis-based current regulators in the field-oriented vector control of doubly fed induction generator (DFIG) wind turbines. The proposed control scheme is synchronized with the virtual grid-flux space vector, readily extractable by a quadrature phase-locked loop (QPLL) system. Identical equidistant-band vector-based hysteresis current regulators (VBHCRs) are then used to control the output currents of the rotor-side and grid-side converters. The proposed hysteresisbased technique has excellent steady-state performance and reveals several advantages in comparison with the commonly used proportional-integral (PI) current regulator, including very fast transient response, simple control structure, and intrinsic robustness to the machine parameters variations. Moreover, the fixed hysteresis bands in VBHCRs are replaced with equidistant bands to limit the instantaneous variations of the switching frequency and reduce the maximum switching frequencies experienced in the converters. Extensive simulation studies are carried out for a 1.5 MW DFIG-based wind turbine to examine the operation of the proposed vector control scheme under changing wind speed and compare its transient and steady-state performances with the conventional PI current regulators. Index Terms-Doubly fed induction generator (DFIG), equidistant hysteresis bands, grid-flux orientation, vector-based hysteresis current regulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.