Epoxidation reaction is an important reaction in organic synthesis because the formed epoxides are intermediates that can be converted to a variety of products. Catalytic palm oil epoxidation using titanium-grafted silica, hydrogen peroxide, and peroxoformic acid was carried out at 60 °C in a fixed batch reactor. Titanium-grafted silica with different percentages of silica content was prepared through sol-gel hydrolysis and was utilized in epoxidation of palm oil. Titanium-grafted silica particles and Epoxidized palm oil were characterized by techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM) and Nuclear Magnetic Resonance (NMR). The TiOSi bonds were detected at 960 cm-1in Ti-Si 0.5 and exhibited highest yield of epoxidized palm oil (EPO) in the epoxidation process which is 84% conversion of unsaturation in palm oil to epoxy groups. New peaks observed in the range of δ 2.4 ppm to 3.6 ppm in the NMR spectrum of EPO belong to protons of the epoxy cyclic ring group, CH-O-CH confirming successful epoxidation of palm oil using the prepared catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.