Geobacter sulfurreducens pili composed of the Type IV pili structural peptide PilA have been implicated as efficient electronic conductors. Though investigated experimentally, no detailed theoretical studies have been performed to date that provide quantitative estimation of the transmission spectrum, electron transfer (ET) paths, efficiency of current generation, and other factors needed for understanding possible mechanisms of conductivity. In the present work, we calculate from first principles the possibilities of electron tunneling through 3 PilA fragments which structure was identified recently by NMR. The results indicate that positively charged amino acids, arginines and lysines form electrostatic traps in the middle of the peptide preventing ET at low bias voltages (<∼6 V). At higher biases the traps are filled with electrons making possible sequential electron tunneling through the central part of the protein. In addition, leucines and phenylalanines form ET loops facilitating electron stabilization within the protein and sequential ET. Our results indicate that ET through the PilA protein cannot occur by coherent ET, but suggest a sequential (incoherent) mechanism. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1706–1717
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.