The corrosion of steel reinforcement in concrete structures is a most widespread problem. Silane is commonly used as a surface treatment material to reduce the entry of moisture containing harmful chemicals into the concrete matrix, thereby restricting corrosion. There is not a standard test method to evaluate the long-term performance of such sealers when applied on concrete. Moreover, the literature does not have a definitive conclusion on the performance of silanes. In this work, transmission X-ray microscopy (TXM) and optical imaging were used to investigate the mass transport properties and silane thickness of field samples treated with silane to gain insight into the performance of silane coatings. Quantitative measurements using optical staining techniques showed that the average measured silane thickness for all 14 projects was 2.5 mm. The TXM results revealed that, on average, the samples with silane coatings exhibited 8.5 times less penetration of outside chemicals, at a depth of 2 mm, as compared to uncracked samples without silane coatings. This work shows that silanes are a useful and practical tool to significantly reduce the permeability of in-service concrete and resist corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.