This paper presents a comprehensive step-wise methodology for implementing industry 4.0 in a functional coal power plant. The overall efficiency of a 660 MWe supercritical coal-fired plant using real operational data is considered in the study. Conventional and advanced AI-based techniques are used to present comprehensive data visualization. Monte-Carlo experimentation on artificial neural network (ANN) and least square support vector machine (LSSVM) process models and interval adjoint significance analysis (IASA) are performed to eliminate insignificant control variables. Effective and validated ANN and LSSVM process models are developed and comprehensively compared. The ANN process model proved to be significantly more effective; especially, in terms of the capacity to be deployed as a robust and reliable AI model for industrial data analysis and decision making. A detailed investigation of efficient power generation is presented under 50%, 75%, and 100% power plant unit load. Up to 7.20%, 6.85%, and 8.60% savings in heat input values are identified at 50%, 75%, and 100% unit load, respectively, without compromising the power plant’s overall thermal efficiency.
Modern data analytics techniques and computationally inexpensive software tools are fueling the commercial applications of data-driven decision making and process optimization strategies for complex industrial operations. In this paper, modern and reliable process modeling techniques, i.e., multiple linear regression (MLR), artificial neural network (ANN), and least square support vector machine (LSSVM), are employed and comprehensively compared as reliable and robust process models for the generator power of a 660 MWe supercritical coal combustion power plant. Based on the external validation test conducted by the unseen operation data, LSSVM has outperformed the MLR and ANN models to predict the power plant’s generator power. Later, the LSSVM model is used for the failure mode recovery and a very successful operation control excellence tool. Moreover, by adjusting the thermo-electric operating parameters, the generator power on an average is increased by 1.74%, 1.80%, and 1.0 at 50% generation capacity, 75% generation capacity, and 100% generation capacity of the power plant, respectively. The process modeling based on process data and data-driven process optimization strategy building for improved process control is an actual realization of industry 4.0 in the industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.