OBJECTIVE Idiopathic intracranial hypertension (IIH) is commonly associated with venous sinus stenosis. In recent years, transvenous dural venous sinus stent (DVSS) insertion has emerged as a potential therapy for resistant cases. However, there remains considerable uncertainty over the safety and efficacy of this procedure, in particular the incidence of intraprocedural and delayed complications and in the longevity of sinus patency, pressure gradient obliteration, and therapeutic clinical outcome. The aim of this study was to determine clinical, radiological, and manometric outcomes at 3-4 months after DVSS in this treated IIH cohort. METHODS Clinical, radiographic, and manometric data before and 3-4 months after DVSS were reviewed in this single-center case series. All venographic and manometric procedures were performed under local anesthesia with the patient supine. RESULTS Forty-one patients underwent DVSS venography/manometry within 120 days. Sinus pressure reduction of between 11 and 15 mm Hg was achieved 3-4 months after DVSS compared with pre-stent baseline, regardless of whether the procedure was primary or secondary (after shunt surgery). Radiographic obliteration of anatomical stenosis correlating with reduction in pressure gradients was observed. The complication rate after DVSS was 4.9% and stent survival was 87.8% at 120 days. At least 20% of patients developed restenosis following DVSS and only 63.3% demonstrated an improvement or resolution of papilledema. CONCLUSIONS Reduced venous sinus pressures were observed at 120 days after the procedure. DVSS showed lower complication rates than shunts, but the clinical outcome data were less convincing. To definitively compare the outcomes between DVSS and shunts in IIH, a randomized prospective study is needed.
The aim of present study is to formulate diphenhydramine nasal nano-emulgels, having lipophilic nano-sized interior droplets, with better penetration for targeted controlled delivery to mucous membrane. Different diphenhydramine (DPH) nasal nano-emulgels were developed having propylene glycol and olive oil (as permeation enhancers) by using RSM for optimization and then evaluated for physico-chemical characteristics and thermal stability. In-vitro drug release through cellophane membrane was conducted and results were analyzed statistically. Further, gelation, mucoadhesive stress, and ex-vivo and histopathological studies were performed on optimized formulation by using goat nasal membrane. Among all formulations, E2 showed maximum DPH release at higher concentration olive oil (4%) and lower concentration propylene glycol (PG) (25%) within 4 h. All formulations have followed first-order kinetics and drug release mechanism was Fickian diffusion. Analysis of variance (ANOVA) and multiple linear regression analysis (MLRA) were used to compare results among formulations and 3D surface plots were constructed also. Optimized formulation showed immediate prolong gelation in artificial nasal mucosa and excellent mucoadhesive property (72.5 ± 1.5 dynes/cm). Approximately 97.1% optimized formulation was permeated through membrane within 4 h, having a high flux rate (33.19 ± 0.897 μg/cm/min) with diffusion coefficient (0.000786 ± 4.56 × 10 cm/min) while drug contents remained on mucosal membrane for 24 h. Histopathologically, change on intra-mucosal surface of excised membrane was observed due to passage of drug through it. In summary, combination of PG and olive oil in nasal DPH nano-emulgel can be utilized successfully for targeted controlled delivery. The optimized formulation has excellent permeability and prolonged residence time on mucosal surface, which prove its good anti-histaminic activity in case of allergic rhinitis.
The integrity of the milk was affected similarly by the two thawing and warming methods. Thawing and warming change the integrity of previously frozen human milk, but not adversely. Concerns about maintaining warmed milk at room temperature need to be explored.
Nimesulide is a non-steroidal anti-inflammatory drug that acts through selective inhibition of COX-2 enzyme. Poor bioavailability of this drug may leads to local toxicity at the site of aggregation and hinders reaching desired therapeutic effects. This study aimed at formulating and optimizing topically applied lotions of nimesulide using an experimental design approach, namely response surface methodology. The formulated lotions were evaluated for pH, viscosity, spreadability, homogeneity and in vitro permeation studies through rabbit skin using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of permeation enhancers, namely propylene glycol and polyethylene glycol on percutaneous absorption of nimesulide from lotion formulations. The best fit quadratic model explained that the enhancer combination at equal levels significantly increased the flux and permeability coefficient. The model was validated by comparing the permeation profile of optimized formulations' predicted and experimental response values, thus, endorsing the prognostic ability of response surface methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.