We report a large and nonvolatile bipolar-electric-field-controlled magnetization at room temperature in a Co(40)Fe(40)B(20)/Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O(3) structure, which exhibits an electric-field-controlled looplike magnetization. Investigations on the ferroelectric domains and crystal structures with in situ electric fields reveal that the effect is related to the combined action of 109° ferroelastic domain switching and the absence of magnetocrystalline anisotropy in Co(40)Fe(40)B(20). This work provides a route to realize large and nonvolatile magnetoelectric coupling at room temperature and is significant for applications.
We report a giant electric-field control of magnetization (M) as well as magnetic anisotropy in a Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) structure at room temperature, in which a maximum relative magnetization change (ΔM/M) up to 83% with a 90° rotation of the easy axis under electric fields were observed by different magnetic measurement systems with in-situ electric fields. The mechanism for this giant magnetoelectric (ME) coupling can be understood as the combination of the ultra-high value of anisotropic in-plane piezoelectric coefficients of (011)-cut PMN-PT due to ferroelectric polarization reorientation and the perfect soft ferromagnetism without magnetocrystalline anisotropy of CoFeB film. Besides the giant electric-field control of magnetization and magnetic anisotropy, this work has also demonstrated the feasibility of reversible and deterministic magnetization reversal controlled by pulsed electric fields with the assistance of a weak magnetic field, which is important for realizing strain-mediated magnetoelectric random access memories.
The process of photocatalysis is appealing to huge interest motivated by the great promise of addressing current energy and environmental issues through converting solar light directly into chemical energy. However, an efficient solar energy harvesting for photocatalysis remains a critical challenge. Here, we reported a new full solar spectrum driven photocatalyst by co-doping of Gd3+ and Sn4+ into A and B-sites of BiFeO3 simultaneously. The co-doping of Gd3+ and Sn4+ played a key role in hampering the recombination of electron-hole pairs and shifted the band-gap of BiFeO3 from 2.10 eV to 2.03 eV. The Brunauer-Emmett-Teller (BET) measurement confirmed that the co-doping of Gd3+ and Sn4+ into BiFeO3 increased the surface area and porosity, and thus the photocatalytic activity of the Bi0.90Gd0.10Fe0.95Sn0.05O3 system was significantly improved. Our work proposed a new photocatalyst that could degrade various organic dyes like Congo red, Methylene blue, and Methyl violet under irradiation with different light wavelengths and gave guidance for designing more efficient photocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.