SummarySoftware Defined Network (SDN) and Network Virtualization (NV) are emerged paradigms that simplified the control and management of the next generation networks, most importantly, Internet of Things (IoT), Cloud Computing, and Cyber‐Physical Systems. The Internet of Things (IoT) includes a diverse range of a vast collection of heterogeneous devices that require interoperable communication, scalable platforms, and security provisioning. Security provisioning to an SDN‐based IoT network poses a real security challenge leading to various serious security threats due to the connection of various heterogeneous devices having a wide range of access protocols. Furthermore, the logical centralized controlled intelligence of the SDN architecture represents a plethora of security challenges due to its single point of failure. It may throw the entire network into chaos and thus expose it to various known and unknown security threats and attacks. Security of SDN controlled IoT environment is still in infancy and thus remains the prime research agenda for both the industry and academia. This paper comprehensively reviews the current state‐of‐the‐art security threats, vulnerabilities, and issues at the control plane. Moreover, this paper contributes by presenting a detailed classification of various security attacks on the control layer. A comprehensive state‐of‐the‐art review of the latest mitigation techniques for various security breaches is also presented. Finally, this paper presents future research directions and challenges for further investigation down the line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.