Background The conventional method for the diagnosis of malaria parasites is the microscopic examination of stained blood films, which is time consuming and requires expertise. We introduce computer-based image segmentation and life stage classification with a random forest classifier. Segmentation and stage classification are performed on a large dataset of malaria parasites with ground truth labels provided by experts. Methods We made use of Giemsa stained images obtained from the blood of 16 patients infected with Plasmodium falciparum. Experts labeled the parasite types from each of the images. We applied a two-step approach: image segmentation followed by life stage classification. In segmentation, we classified each pixel as a parasite or non-parasite pixel using a random forest classifier. Performance was evaluated with classification accuracy, Dice coefficient and free-response receiver operating characteristic (FROC) analysis. In life stage classification, we classified each of the segmented objects into one of 8 classes: 6 parasite life stages, early ring, late ring or early trophozoite, mid trophozoite, early schizont, late schizont or segmented, and two other classes, white blood cell or debris. Results Our segmentation method gives an average cross-validated Dice coefficient of 0.82 which is a 13% improvement compared to the Otsu method. The Otsu method achieved a True Positive Fraction (TPF) of 0.925 at the expense of a False Positive Rate (FPR) of 2.45. At the same TPF of 0.925, our method achieved an FPR of 0.92, an improvement by more than a factor two. We find that inclusion of average intensity of the whole image as feature for the random forest considerably improves segmentation performance. We obtain an overall accuracy of 58.8% when classifying all life stages. Stages are mostly confused with their neighboring stages. When we reduce the life stages to ring, trophozoite and schizont only, we obtain an accuracy of 82.7%. Conclusion Pixel classification gives better segmentation performance than the conventional Otsu method. Effects of staining and background variations can be reduced with the inclusion of average intensity features. The proposed method and data set can be used in the development of automatic tools for the detection and stage classification of malaria parasites. The data set is publicly available as a benchmark for future studies.
BackgroundMillions of cells are present in thousands of images created in high-throughput screening (HTS). Biologists could classify each of these cells into a phenotype by visual inspection. But in the presence of millions of cells this visual classification task becomes infeasible. Biologists train classification models on a few thousand visually classified example cells and iteratively improve the training data by visual inspection of the important misclassified phenotypes. Classification methods differ in performance and performance evaluation time. We present a comparative study of computational performance of gentle boosting, joint boosting CellProfiler Analyst (CPA), support vector machines (linear and radial basis function) and linear discriminant analysis (LDA) on two data sets of HT29 and HeLa cancer cells.ResultsFor the HT29 data set we find that gentle boosting, SVM (linear) and SVM (RBF) are close in performance but SVM (linear) is faster than gentle boosting and SVM (RBF). For the HT29 data set the average performance difference between SVM (RBF) and SVM (linear) is 0.42 %. For the HeLa data set we find that SVM (RBF) outperforms other classification methods and is on average 1.41 % better in performance than SVM (linear).ConclusionsOur study proposes SVM (linear) for iterative improvement of the training data and SVM (RBF) for the final classifier to classify all unlabeled cells in the whole data set.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2105-15-342) contains supplementary material, which is available to authorized users.
Participants viewed pairs of ellipses differing in size and aspect ratio (short axis divided by long axis length). In separate experiments with identical stimuli participants were asked to indicate the larger or the more circular ellipse of the pair. First, the size discrimination thresholds decreased with an increase in the circularity of the ellipses. Second, size discrimination thresholds were lower than aspect ratio thresholds, except for the circle and more elongated ellipses where both were similar. Third, there was also an effect of size on aspect ratio discrimination such that larger stimuli appeared more circular.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.