Background:This study is designed to appraise the diagnostic value of technetium-99m glucoheptonate (Tc-99m GHA) single photon emission computed tomography (SPECT) in brain tumor grading.Subjects and Methods:The study was performed on 30 patients referred from the Department of Neurosurgery, who were from both urban and rural areas. Data were collected through interview, history taking, and clinical examination followed by recording the desired parameters and finally imaging. The study subjects were divided into five groups: Controls (n = 4), low-grade tumors (n = 8), high-grade tumors (n = 8), metastases (n = 5), and nonneoplastic lesions (n = 5). This division was based on the World Health Organization (WHO) classification postclinico-histological diagnosis. Each of the subjects underwent contrast-enhanced computed tomography/contrast-enhanced magnetic resonance and Tc-99m GHA SPECT preoperatively. All were followed up postoperatively, and histopathological reports were regarded as the gold standard for tumor grading wherever available.Results:It was found that high-grade tumors (Grades III/IV and IV/IV according to the WHO classification) showed significantly higher tumor to normal (T/N) ratios as well as Tmax/N ratios when compared with low-grade tumors (Grades I/IV and II/IV), metastases or nonneoplastic lesions.Conclusions:In summary, the results of this study suggest that in situations where a preoperative grading of tumor is required Tc-99m GHA can be used in tumor grading and its use should be encouraged. Semi-quantitative analysis using both T/N as well as Tmax/N can be used in differentiating high-grade tumors from low-grade ones.
Giant cell tumor of the bone accounts for 4?;5% of all primary bone tumors. Spine is the fourth common site for their occurrence and axis is a relatively rare site. A case of giant cell tumor of axis in a 17-year-old male is hereby reported. The patient underwent transoral decompression and posterior fusion. Postoperatively patient had no neurological deficit and biopsy revealed the tumor as giant cell tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.