Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.
Experimental investigations of Pr I spectral lines were performed by means of laser induced fluorescence spectroscopy, using a hollow cathode discharge lamp as source of free atoms. The wavelengths for the laser excitation were found by the help of a highly resolved Fourier transform spectrum. Altogether we excited 236 unclassified lines and analysed their hyperfine structure, which led, together with the measured wavelengths of the observed fluorescence lines, to the discovery of 32 new even parity and 38 odd parity fine structure energy levels. These levels allow to classify more than 670 spectral lines of Pr I. The wave number calibrated Fourier transform spectrum allowed us to determine the energies of most of these newly discovered levels with an uncertainty of 0.015 cm -1 . Angular momenta, parity, and magnetic and electric hyperfine interaction constants (A and B) of the new levels were also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.