One of the challenges of the Internet of Things (IoT) is to provide connectivity to devices around the globe. Long Range (LoRa) is one of the most practical technologies due to its low-power and long-range capabilities to be used by the Low Earth Orbit (LEO) CubeSat. This study aims to evaluate the performance of the Long Range Wide Area Network (LoRaWAN) in receiving uplink messages from ground sensor nodes at an altitude of 550 km with a maximum elevation angle of 0°. An Adaptive Data Rate (ADR) is applied for the dynamic signal reception with respect to receiving signal strength. In this study, the path loss is simulated using attenuation levels from 30–150 dB to ensure that the signal connectivity success rate is at a minimum elevation angle and to perform the link analysis under various conditions. The results show that the LoRaWAN signals are successfully received with an SNR of −21 at the 150 dB attenuation from the end nodes because of its spread-spectrum technique which allows the system to detect signals under the noise floor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.