This paper discusses the influence of fiber reinforcement on the properties of geopolymer concrete composites, based on fly ash, ground granulated blast furnace slag and metakaolin. Traditional concrete composites are brittle in nature due to low tensile strength. The inclusion of fibrous material alters brittle behavior of concrete along with a significant improvement in mechanical properties i.e., toughness, strain and flexural strength. Ordinary Portland cement (OPC) is mainly used as a binding agent in concrete composites. However, current environmental awareness promotes the use of alternative binders i.e., geopolymers, to replace OPC because in OPC production, significant quantity of CO2 is released that creates environmental pollution. Geopolymer concrete composites have been characterized using a wide range of analytical tools including scanning electron microscopy (SEM) and elemental detection X-ray spectroscopy (EDX). Insight into the physicochemical behavior of geopolymers, their constituents and reinforcement with natural polymeric fibers for the making of concrete composites has been gained. Focus has been given to the use of sisal, jute, basalt and glass fibers.
E-Textiles have gained enormous attention due to their specific characteristics in various non-conventional applications such as electromagnetic shielding materials. With the advent of various high frequency-driven devices, the need to restrict the non-ionizing radiations from their undesired effects became imperative. Due to the ease of production, better electrical conductivity and durability, the conductive hybrid cover yarns with continuous metallic filaments have earned its place as the most convenient form of yarns to develop E-textiles. However, controlling the amount of conducting material in yarns poses a challenge as the increase in size of the metallic filaments are associated with reduced electromagnetic shielding effectiveness due to increased stiffness of yarns, which resists in proper interlacement and hence causes openness in fabrics. The proposed design of conductive hybrid cover yarns is proven to have better tensile properties and modulus, therefore this design is more suitable to produced fabrics with higher cover factors. The amount of conducting material in the proposed design increased significantly without changing the size of the continuous filaments. Moreover, 99.9% shielding effectiveness is achieved with this increased metal content in fabrics in S-band and partly C-band microwave frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.