Settling velocity or depositional velocity is considered a key parameter to account for in the drilling technology of oil and gas wells as well as hydrocarbon processing since an accurate estimation of this parameter allows the transport of cuttings efficiently, avoids non-productive time, and helps avoid costly problems. Understanding the settling velocity in fluid with high salinity will help for the better separation of oil and natural gas streams in processing facilities. Although a great amount of effort was given to rheology and settling velocity measurements for power-law fluid and Bingham fluids, there are limited studies available in the literature for Herschel–Bulkley (H–B) fluid with salinity. The present study analyzes the fluid rheology of non-Newtonian fluids with, and without, salinity. Moreover, experiments have been conducted to measure the settling velocity of different diameters of solid particles through Herschel–Bulkley fluids with various salinity conditions. For the rheology analysis, it is found that higher weight percentages of NaCl lead to low values of shear stresses. As well, higher weight percentages of CaCl2 concentration result in a slight increase in shear stresses per a given shear rate. On the other hand, higher percentages of salt concentration cause an increase in the terminal velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.