Cellulose nanocrystals (CNCs) have attracted much interest due to their unique optical property, rich resource, environment friendliness, and templating potentials. CNCs have been reported as novel photonic humidity sensors, which are unfortunately limited by the dissolution and unideal moisture absorption of CNCs. We, in this study, developed a high-performance photonic humidity composite sensor that consisted of CNCs and polyacrylamide; chemical bonding was induced between the two components by using glutaraldehyde as a bridging agent. The composites inherited the chiral nematic structure of CNCs and maintained it well through a cycling test. A distinct color change was observed for these composites used as a humidity indicator; the change was caused by polyacrylamide swelling with water and thus enlarging the helical pitch of the chiral nematic structure. The composites showed no degradation of the sensing performance through cycling. The excellent cycling stability was attributed to the bonding between polyacrylamide and CNCs. This composite strategy can extend to the development of other photonic indicators.
Summary
Two‐dimensional material MXenes owing to their hydrophilic nature, surface termination, and high conductivity can be used in the energy storage device as an anode material. However, poor ion transfer and less available intercalating sites due to self‐stacking of MXene sheets prevent comprehensive utilization of their electrochemical properties. To resolve this problem, a facile method is introduced in this paper to disperse MXene sheets onto reduced graphene oxide sheets to form a porous structure by enhancing electrostatic interactions between two components, which can facilitate ion movement and provide access of ions to more intercalating sites. This hybrid material delivered a capacity of 357 mAh g−1 at 0.05 A g−1 as anode in case of lithium‐ion batteries. Furthermore, the hybrid material showed exceptional stability even after 1000 cycles at 1 A g−1. Current work offers an easy approach for the synthesis of high‐performance niobium carbide‐based hybrid energy storage materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.