During preimplantation mouse development, the inner cell mass (ICM) differentiates into two cell lineages--the epiblast and the primitive endoderm (PrE)--whose precursors are identifiable by reciprocal expression of Nanog and Gata6, respectively. PrE formation depends on Nanog by a non-cell-autonomous mechanism. To decipher early cell- and non-cell-autonomous effects, we performed a mosaic knockdown of Nanog and found that this is sufficient to induce a PrE fate cell autonomously. Strikingly, in Nanog null embryos, Gata6 expression is maintained, showing that initiation of the PrE program is Nanog independent. Treatment of Nanog null embryos with pharmacological inhibitors revealed that RTK dependency of Gata6 expression is initially direct but later indirect via Nanog repression. Moreover, we found that subsequent expression of Sox17 and Gata4--later markers of the PrE--depends on the presence of Fgf4 produced by Nanog-expressing cells. Thus, our results reveal three distinct phases in the PrE differentiation program.
During blastocyst formation, inner cell mass (ICM) cells differentiate into either epiblast (Epi) or primitive endoderm (PrE) cells, labeled by Nanog and Gata6, respectively, and organized in a salt-and-pepper pattern. Previous work in the mouse has shown that, in absence of Nanog, all ICM cells adopt a PrE identity. Moreover, the activation or the blockade of the Fgf/RTK pathway biases cell fate specification towards either PrE or Epi, respectively. We show that, in absence of Gata6, all ICM cells adopt an Epi identity. Furthermore, the analysis of Gata6 +/− embryos reveals a dose-sensitive phenotype, with fewer PrE-specified cells. These results and previous findings have enabled the development of a mathematical model for the dynamics of the regulatory network that controls ICM differentiation into Epi or PrE cells. The model describes the temporal dynamics of Erk signaling and of the concentrations of Nanog, Gata6, secreted Fgf4 and Fgf receptor 2. The model is able to recapitulate most of the cell behaviors observed in different experimental conditions and provides a unifying mechanism for the dynamics of these developmental transitions. The mechanism relies on the co-existence between three stable steady states (tristability), which correspond to ICM, Epi and PrE cells, respectively. Altogether, modeling and experimental results uncover novel features of ICM cell fate specification such as the role of the initial induction of a subset of cells into Epi in the initiation of the salt-and-pepper pattern, or the precocious Epi specification in Gata6 +/− embryos.
Pluripotent mouse embryonic stem cells maintain their identity throughout virtually infinite cell divisions. This phenomenon, referred to as self-renewal, depends on a network of sequence-specific transcription factors (TFs) and requires daughter cells to accurately reproduce the gene expression pattern of the mother. However, dramatic chromosomal changes take place in mitosis, generally leading to the eviction of TFs from chromatin. Here, we report that Esrrb, a major pluripotency TF, remains bound to key regulatory regions during mitosis. We show that mitotic Esrrb binding is highly dynamic, driven by specific recognition of its DNA-binding motif and is associated with early transcriptional activation of target genes after completion of mitosis. These results indicate that Esrrb may act as a mitotic bookmarking factor, opening another perspective to molecularly understand the role of sequence-specific TFs in the epigenetic control of self-renewal, pluripotency and genome reprogramming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.