The Toll receptor was originally identified as an indispensable molecule for Drosophila embryonic development and subsequently as an essential component of innate immunity from insects to humans. Although in Drosophila the Easter protease processes the pro-Spätzle protein to generate the Toll ligand during development, the identification of the protease responsible for pro-Spätzle processing during the immune response has remained elusive for a decade. Here, we report a protease, called Spätzle-processing enzyme (SPE), required for Toll-dependent antimicrobial response. Flies with reduced SPE expression show no noticeable pro-Spätzle processing and become highly susceptible to microbial infection. Furthermore, activated SPE can rescue ventral and lateral development in embryos lacking Easter, showing the functional homology between SPE and Easter. These results imply that a single ligand/receptor-mediated signaling event can be utilized for different biological processes, such as immunity and development, by recruiting similar ligand-processing proteases with distinct activation modes.
Unlike mammalian Toll-like Receptors, the Drosophila Toll receptor does not interact directly with microbial determinants but is rather activated upon binding a cleaved form of the cytokine-like molecule Spatzle (Spz). During the immune response, Spz is thought to be processed by secreted serine proteases (SPs) present in the hemolymph that are activated by the recognition of gram-positive bacteria or fungi . In the present study, we have used an in vivo RNAi strategy to inactivate 75 distinct Drosophila SP genes. We then screened this collection for SPs regulating the activation of the Toll pathway by gram-positive bacteria. Here, we report the identification of five novel SPs that function in an extracellular pathway linking the recognition proteins GNBP1 and PGRP-SA to Spz. Interestingly, four of these genes are also required for Toll activation by fungi, while one is specifically associated with signaling in response to gram-positive bacterial infections. These results demonstrate the existence of a common cascade of SPs upstream of Spz, integrating signals sent by various secreted recognition molecules via more specialized SPs.
In vitro, without Mediator, the association of general transcription factors (GTF) and RNA polymerase II (Pol II) in preinitiation complexes (PIC) occurs in an orderly fashion. In this work, we explore the in vivo function of Mediator in GTF recruitment to PIC. A direct interaction between Med11 Mediator head subunit and Rad3 TFIIH subunit was identified. We explored the significance of this interaction and those of Med11 with head module subunits Med17 and Med22 and found that impairing these interactions could differentially affect the recruitment of TFIIH, TFIIE, and Pol II in the PIC. A med11 mutation that altered promoter occupancy by the TFIIK kinase module of TFIIH genome-wide also reduced Pol II CTD serine 5 phosphorylation. We conclude that the Mediator head module plays a critical role in TFIIH and TFIIE recruitment to the PIC. We identify steps in PIC formation that suggest a branched assembly pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.