Abstract. Despite California being a highly seismic prone region, most homeowners are not covered against this risk. This study analyses the reasons for homeowners to purchase insurance to cover earthquake losses, with application in California. A dedicated database is built from 18 different data sources about earthquake insurance, gathering data since 1921. A new model is developed to assess the take-up rate based on the homeowners’ risk awareness and the average annual insurance premium amount. Results suggest that only two extreme situations would lead all owners to cover their home with insurance: (1) a widespread belief that a devastating earthquake is imminent, or alternatively (2) a massive decrease in the average annual premium amount by a factor exceeding 6 (from USD 980 to 160, 2015 US dollars). Considering the low likelihood of each situation, we conclude from this study that new insurance solutions are necessary to fill the protection gap.
A number of probabilistic seismic hazard assessment (PSHA) maps have been released for Indonesia over the past few decades. This study proposes a method for testing PSHA maps using U.S. Geological Survey ShakeMap catalog considered as historical seismicity for Indonesia. It consists in counting the number of sites on rock soil for which the independent maximum peak ground acceleration (PGA) of the ShakeMap footprints between May 1968 and May 2018 exceeds the thresholds from the PSHA map studied and in comparing this number with the probability of exceedance given in the PSHA map. Although ShakeMap footprints are not as accurate and complete as continuous recorded ground motion, the spatially distributed ShakeMap covers 7,642,261 grid points, with a resolution of 1 km2, compensating the lack of instrumental data over this period. This data set is large enough for the statistical analysis of independent PGA values on rock sites only. To obtain the subdata set, we develop a new selection process and a new comparison method, considering the uncertainty of ShakeMap estimates. The method is applied to three PSHA maps (Global Seismic Hazard Assessment Program [GSHAP], Global Assessment Report [GAR], and Standar Nasional Indonesia [SNI2017]) for a selection of sites first located in Indonesia and next only in the western part of the country. The results show that SNI2017 provides the best fit with seismicity over the past 50 yr for both sets of rock sites (whole country and western part only). At the opposite, the GAR and GSHAP seismic hazard maps only fit the seismicity observed for the set of rock sites in western Indonesia. This result indicates that this method can only conclude on the spatial scale of the analysis and cannot be extrapolated to any other spatial resolution.
<p>Despite California being a highly seismic prone region, around 85% of people are not covered against this risk. This situation results from more than 100 years of evolution since the first earthquake insurance cover after the 1906 San Francisco earthquake. To understand this evolution, two analyses have been performed: the first one at the market level and the second one at the insured people level.</p><p>At the market level, as many variables as the premium amount, the risk monitoring, the funding sources of prevention plans, the insurance company&#8217;s solvency and the attractiveness of earthquake insurance solutions, have been investigated. By cross-analysing data collected and analysing the evolution with time, three different phases have been identified in the earthquake insurance market history.</p><p>At insured people level, a database is built from 18 different data sources about earthquake insurance, gathering data since 1921. Next, a new model is developed to assess the rate of homeowners insured against this risk, according to their risk awareness and the average annual insurance premium amount.</p><p>These two analyses are finally used to investigate in which extent the California earthquake insurance market could reach again 40% of people insured, like in 1993 and 1996. Even if results show that a widespread belief that a devastating earthquake is imminent could bring such a situation, only a new earthquake insurance model will allow to achieve this goal in a sustainable way. In that respect, the efficiency of two current initiatives to bring more people to get an earthquake insurance: "Earthquake Brace and Bolt" and "JumpStart Recovery", is assessed at the light of the analyses performed previously in this paper.</p>
<p>The large-scale and complex nature of climate change makes it difficult to assess and quantify the impact on insurance activities. Climate change is likely affecting the probability of natural hazard occurrence in terms of severity and/or frequency.</p><p>Natural catastrophe risk is a function of hazard, exposure and vulnerability. As a (re)-insurer it is seen that changes in year-on-year losses are a function of all these components and not just the hazard.</p><p>The present study focuses, in a first step, on assessing impacts of climate change on fluvial flood risks in Europe solely due to changes in hazard itself. A stochastic catalogue of future flood risk events is derived from Pan-European data sets of river flood probability of occurrence produced within EU FP7 RAIN project. The loss modelling framework internally developed at AXA is then used to provide a geographical view of changes in future flood risks.</p><p>&#160;</p>
Abstract. Despite California is a highly seismic prone region, most of homeowners are not covered against this risk. This study analyses the reasons for homeowners to purchase or not an insurance to cover earthquake losses, with application in California. A dedicated database is built from 18 different data sources about earthquake insurance, gathering data since 1921. A new model is developed to assess the take-up rate based on the homeowners’ risk awareness and the average annual insurance premium amount. Results suggest that only two extreme situations would lead all owners to cover their home with insurance: (1) a widespread belief that a devastating earthquake is imminent, or alternatively, (2) a massive decrease in the average annual premium amount by a factor exceeding 6 (from $980 to $160, USD 2015). Considering the low likelihood of each situation, we conclude from this study that new insurance solutions are necessary to fill the protection gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.