The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02-to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 AE 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32Â10 6 cells/ml, !10 16 purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.
The effects of bromodeoxyuridine (BrdUrd) substitution for thymidine on gamma-ray-induced strand breakage were determined in single- and double-stranded oligonucleotides and double-stranded oligonucleotides containing a mismatched bubble region. BrdUrd does not sensitize complementary double-stranded DNA to gamma-ray-induced strand breakage, but it greatly sensitizes single-stranded DNA. However, when the BrdUrd is present in a single-stranded bubble of a double-stranded oligonucleotide, the non-base-paired nucleotides adjacent to the BrdUrd as well as several unpaired sites on the opposite unsubstituted strand are strongly sensitized. The radiosensitization properties of BrdUrd result primarily from the electrophilic nature of the bromine, making it a good leaving group and leading to the irreversible formation of the uridine-yl radical (dUrd(.)) or the uridine-yl anion (dUrd(-)) upon addition of an electron. The radiolytic loss of the bromine atom is greatly suppressed in double-stranded compared to single-stranded DNA. Thus we propose that the radiosensitization effects of bromouracil in vivo will likely be limited to single-strand regions such as found in transcription bubbles, replication forks, DNA bulges and the loop region of telomeres. Our results may have profound implications for the clinical use of bromodeoxyuridine (BrdUrd) as a radiosensitizer as well as for the development of targeted radiosensitizers.
Interstrand cross-links (ICL) represent one of the most toxic types of DNA damage for dividing cells. They are induced both by natural products (e.g., psoralens + UVA) and by several chemical agents, some of which are used in chemotherapy (e.g., carboplatin and mitomycin C). Although repair mechanisms exist for interstrand cross-links, these lesions can induce mutations, chromosomal rearrangements, and cell death. Here, we report, for the first time, the formation of ICL by gamma-rays in brominated DNA. It is well established that the radiosensitization properties of bromodeoxyuridine (BrdUrd) result primarily from the electrophilic nature of the bromine, making it a good leaving group and leading to the irreversible formation of a uridinyl radical (dUrd(*)) or uridinyl anion (dUrd-) upon addition of an electron. We observe that the radiolytic loss of the bromine atom is greatly suppressed in double-stranded compared to single-stranded DNA. We have used a model DNA containing a bulge, formed by five mismatched bases, and have observed a linear dose-response for the formation of strand breaks on the single-stranded regions of both the brominated strand and the opposite nonbrominated strand. Surprisingly, we have observed the formation of interstrand cross-links exclusively in the mismatched region. Thus, we propose that the radiosensitization effects of bromodeoxyuridine in vivo will almost certainly be limited to single strand regions such as found in transcription bubbles, replication forks, mismatched DNA, and possibly the loop region of telomeres. Our results suggest that interstrand cross-links may contribute to the radiosensitization effects of BrdUrd. These findings may have profound implications for the clinical use of bromodeoxyuridine as a radiosensitizer, as well as for the development of targeted radiosensitizers.
Although restoration of dystrophin expression via exon skipping in both cardiac and skeletal muscle has been successfully demonstrated in the mdx mouse, restoration of cardiac dystrophin expression in large animal models of Duchenne muscular dystrophy (DMD) has proven to be a challenge. In large animals, investigators have focused on using intravenous injection of antisense oligonucleotides (AO) to mediate exon skipping. In this study, we sought to optimize restoration of cardiac dystrophin expression in the golden retriever muscular dystrophy (GRMD) model using percutaneous transendocardial delivery of recombinant AAV6 (rAAV6) to deliver a modified U7 small nuclear RNA (snRNA) carrying antisense sequence to target the exon splicing enhancers of exons 6 and 8 and correct the disrupted reading frame. We demonstrate restoration of cardiac dystrophin expression at 13 months confirmed by reverse transcription-PCR (RT-PCR) and immunoblot as well as membrane localization by immunohistochemistry. This was accompanied by improved cardiac function as assessed by cardiac magnetic resonance imaging (MRI). Percutaneous transendocardial delivery of rAAV6 expressing a modified U7 exon skipping construct is a safe, effective method for restoration of dystrophin expression and improvement of cardiac function in the GRMD canine and may be easily translatable to human DMD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.