Abstract. Orthogonal and biorthogonal wavelets became very popular image processing tools but exhibit major drawbacks, namely a poor resolution in orientation and the lack of translation invariance due to aliasing between subbands. Alternative multiresolution transforms which specifically solve these drawbacks have been proposed. These transforms are generally overcomplete and consequently offer large degrees of freedom in their design. At the same time their optimization gets a challenging task. We propose here the construction of log-Gabor wavelet transforms which allow exact reconstruction and strengthen the excellent mathematical properties of the Gabor filters. Two major improvements on the previous Gabor wavelet schemes are proposed: first the highest frequency bands are covered by narrowly localized oriented filters. Secondly, the set of filters cover uniformly the Fourier domain including the highest and lowest frequencies and thus exact reconstruction is achieved using the same filters in both the direct and the inverse transforms (which means that the transform is self-invertible). The present transform not only achieves important mathematical properties, it also follows as much as possible the knowledge on the receptive field properties of the simple cells of the Primary Visual Cortex (V1) and on the statistics of natural images. Compared to the state of the art, the log-Gabor wavelets show excellent ability to segregate the image information (e.g. the contrast edges) from spatially incoherent Gaussian noise by hard thresholding, and then to represent image features through a reduced set of large magnitude coefficients. Such characteristics make the transform a promising tool for processing natural images.
Gabor representations present a number of interesting properties despite the fact that the basis functions are nonorthogonal and provide an overcomplete representation or a nonexact reconstruction. Overcompleteness involves an expansion of the number of coefficients in the transform domain and induces a redundancy that can be further reduced through computational costly iterative algorithms like Matching Pursuit. Here, a biologically plausible algorithm based on competitions between neighboring coefficients is employed for adaptively representing any source image by a selected subset of Gabor functions. This scheme involves a sharper edge localization and a significant reduction of the information redundancy, while, at the same time, the reconstruction quality is preserved. The method is characterized by its biological plausibility and promising results, but it still requires a more in depth theoretical analysis for completing its validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.