Poly(ethylene terephthalate) (PET) is a semiaromatic thermoplastic polyester used in many fields. For specific applications, controlled of the surface wettability (hydrophily/hydrophoby) could be a great challenge. Aminolysis of PET surfaces with branched polyethylenimine gives amino functional groups on the surface with high grafting density. Then, in a second step, atom transfer radical polymerization (ATRP) initiator was grafted by reaction with 2-bromoisobutyryl bromide. Surface initiated ATRP of 2-lactobionamidoethyl methacrylate (LAMA) was performed in solution in the presence of a sacrificial initiator or an appropriate amount of Cu(II) species that act as deactivator. The efficiency of all reactions was confirmed by X-ray photoelectron spectroscopy. Wetting properties and surface energy were found to vary systematically depending to the type of functionalization and grafting. The quantity of grafted carbohydrate was determined by phenol/sulfuric acid colorimetric titration. The sugar graft density was observed to vary according to the ratio (monomer)/(free initiator). High graft density could be obtained yielding to superhydrophilic polymer brushes.
The affinity of AtO + for around 20 model ligands (L), carrying functionalized oxygen, sulfur, and nitrogen atoms, has been assessed through a combined experimental and theoretical methodology. Significant equilibrium constants (K L ∼ 10 4 ) have been measured for sulfur-containing compounds, in agreement with the previously highlighted, relatively stable radiolabeling of SH-containing proteins with 211 At. Conversely, no interaction occurs in the aqueous phase for their oxygenated counterparts, but higher affinities (K L > 10 6 ) have been determined for nitrogen-based ligands, including aromatic nitrogen heterocycles. The quantum mechanical calculations definitively ruled out any rationale based on either the metallic character of astatine or its guessed softness; the favored interactions all involve specifically the oxygen atom of AtO + , leading to the formation of covalent O−S or O−C single bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.