Electronic power devices used for transportation applications (automotive and avionics) experience severe temperature variations, which promote their thermal fatigue and failure.For example, for power modules mounted on the engine of an aircraft, temperature variations range from -55°C (in the worst case of storage before takeoff) to +200°C (flight). Direct bonded copper (DBC) substrates are used to isolate chips (silicon dies) from their base plates. For large thermal amplitudes, the failure occurs in DBC substrates, which are copper/ceramic/copper sandwiches.The Weibull approach was used to model the brittle fracture of the ceramic layer from a natural defect. Furthermore, geometric singularities in the upper ceramic/copper interface are at the origin of cracks that grow by fatigue along the interface and finally bifurcate and break the ceramic layer.It is discussed how the framework of linear elastic fracture mechanics (LEFM) can be used to characterize the stress field around singularities and the associated risk of failure. These two criteria and the finite element method, allow analysing how a thermal loading history may modify the risk of failure of DBC substrates. It was shown, in particular, that three overcooling cycles should produce an "overload retardation effect". Experimentally, applying 3 "overload cycles" (-70°C,+180°C), prior to thermal fatigue cycles (-30°C, +180°C), increased very significantly the fatigue life of DBC substrates. This result shows that the fatigue life and the reliability of power electronic devices could be optimized using a thermo-mechanical approach of the problem and suitable failure criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.