A set of four structurally related glycolipids are described: two of them have one glucose unit connected to either stearic or oleic acid, and two other ones have a diglucose headgroup (sophorose) similarly connected to either stearic or oleic acid. The self-assembly properties of these compounds, poorly known, are important to know due to their use in various fields of application from cleaning to cosmetics to medical. At basic pH, they all form mainly small micellar aggregates. At acidic pH, the oleic and stearic derivatives of the monoglucose form, respectively, vesicles and bilayer, while the same derivatives of the sophorose headgroup form micelles and twisted ribbons. We use pH-resolved in situ small angle X-ray scattering (SAXS) under synchrotron radiation to characterize the pH-dependent mechanism of evolution from micelles to the more complex aggregates at acidic pH. By pointing out the importance of the COO − /COOH ratio, the melting temperature, T m , of the lipid moieties, hydration of the glycosidic headgroup, the packing parameter, membrane rigidity, and edge stabilization, we are now able to draw a precise picture of the full self-assembly mechanism. This work is a didactical illustration of the complexity of the self-assembly process of a stimuli-responsive amphiphile during which many concomitant parameters play a key role at different stages of the process.
Microbial glycolipids are a class of well-known compounds, but their self-assembly behavior is still not well understood. While the free carboxylic acid end group makes some of them interesting stimuli-responsive compounds, the sugar hydrophilic group and the nature of the fatty acid chain make the understanding of their self-assembly behavior in water not easy and highly unpredictable. Using cryo-transmission electron microscopy (cryo-TEM) and both pH-dependent in situ and ex situ small angle X-ray scattering (SAXS), we demonstrate that the aqueous self-assembly at room temperature (RT) of a family of β-d-glucose microbial glycolipids bearing a saturated and monounsaturated C18 fatty acid chain cannot be explained on the simple basis of the well-known packing parameter. Using the “pH-jump” process, we find that the molecules bearing a monosaturated fatty acid forms vesicles below pH 6.2, as expected, but the derivative with a saturated fatty acid forms infinite bilayer sheets below pH 7.8, instead of vesicles. We show that this behavior can be explained on the different bilayer membrane elasticity as a function of temperature. Membranes are either flexible or stiff for experiments performed at a temperature respectively above or below the typical melting point, T M, of the lipidic part of each compound. Finally, we also show that the disaccharide-containing acidic cellobioselipid forms a majority of chiral fibers, instead of the expected micelles.
Ternary solutions containing one hydrotrope (such as ethanol) and two immiscible fluids, both being soluble in the hydrotrope at any proportion, show unexpected solubilization power and allow strange but yet unexplained membrane enzyme activity. We study the system ethanol-water-octanol as a simple model of such kinds of ternary solutions. The stability of "detergentless" micelles or microemulsions in such mixtures was proposed in the pioneering works of Barden and coworkers [Smith GD, Donelan CE, Barden RE (1977) J Colloid Interface Sci 60(3):488-496 and Keiser BA, Varie D, Barden RE, Holt SL (1979) J Phys Chem 83(10):1276-1281] in the 1970s and then, neglected, because no general explanation for the observations was available. Recent direct microstructural evidence by light, X-ray, and neutron scattering using contrast variation reopened the debate. We propose here a general principle for solubilization without conventional surfactants: the balance between hydration force and entropy. This balance explains the stability of microemulsions in homogeneous ternary mixtures based on cosolvents.A dding slightly hydrophobic compounds to water can lead to structureless solutions, aggregate formation, or even, formation of defined structures, such as micelles, in the case where the added compound is a surfactant. In ternary or quaternary mixtures containing at least one type of surfactant, the formation of microemulsions usually occurs in specific parts of the phase diagram. These macroscopically homogeneous, transparent liquids are composed of well-defined microstructures with specific signatures in scattering experiments (1). It was only recently that similar structures, designated as "pre-Ouzo," were found and characterized in ternary mixtures of two partly miscible solvents and one hydrotropic cosolvent (2). In this paper, we present a theory that explains and even predicts the existence of such structures in "detergentless" formulations.Ouzo, Limoncello, and Pommeau liquors are popular in several European countries and produced by maceration of plants with a specific amount of ethanolic solutions containing some waterinsoluble compounds (3). Adding water to those solutions leads to spontaneous formation of fine emulsions with a remarkable stability, a phenomenon that is called the "Ouzo effect" (4). Even common mouthwash products show a similar phenomenon. In common, they entirely clear up on addition of ethanol and get milky with the addition of water (5).Ternary surfactant-free model systems, such as decane-waterisobutoxyethanol [as studied by Shinoda and Kunieda (6)], however, show this Ouzo effect only for specific points in the composition diagram. The precondition for such behavior seems to be the mixture of two miscible (either completely or at least to a large degree) solvents 1 and 2 with a solute that can also be a liquid (7) (e.g., anethole in the case of Ouzo; component 3). This component 3 must be highly soluble in one solvent (e.g., ethanol) but poorly soluble in the other one (e.g., water) (8).Where...
Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm–1. A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0–10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy.
Sandwiched: The cobaltabisdicarbollide (mono‐)anion ([3,3′‐Co(1,2‐C2B9H11)2]−, COSAN−) forms monolayer vesicles at low concentrations in water (see picture). An increase in concentration leads to a Coulomb explosion of the closely packed vesicles into small micelles, which results in the coexistence of both aggregation states at higher concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.