Early diagnostic and treatment of prostate cancer could be achieved using magnetic resonance imaging (MRI) to improve tumor perceptibility. Nonetheless, performing intra-MRI interventions present significant challenges due to intense magnetic fields and limited patient access. This paper presents an MRI-compatible manipulator using elastically averaged binary pneumatic air muscles (PAMs) to orient a needle into a targeted region of the prostate under the command of a physician. The proposed manipulator is based on an all-polymer compliant mechanism designed to make a completely MRI-compatible positioning system. A model based on the PAMs deformation energy is used to design the manipulator so that its discrete workspace, stiffness, and size meet clinically relevant design requirements. The model is also used to study the motion of the device during a state shift. A laboratory prototype of the device shows that the covered workspace, stiffness, and size of the manipulator can meet clinical requirements. Repeatability and accuracy are also acceptable with values of 0.5 mm and 1.7 mm, respectively. Finally, the manipulator’s behavior during state shift describes a hook-shaped motion that is both analytically predicted and experimentally observed.
This paper presents the design and experimental characterization of a binary jet valve, specifically developed to control an all-polymer needle manipulator during intramagnetic resonance imaging (MRI) prostate interventions (biopsies and brachytherapies). The key feature of the MRI-compatible valve is its compact dual-stage configuration. The first stage is composed of a low-friction jet nozzle, driven by a small rotary dielectric elastomer actuator (DEA). The second stage provides sufficient air flow and stability for the binary robotic application through an independent air supply, activated by a bistable spool. A hyperelastic stress-strain model is used to optimize the geometrical dimensions of the DEA jet assembly. Fully functional valve prototypes, made with 3M's VHB 4905 films, are monitored with a high-speed camera in order to quantify the system's shifting dynamics. The impact of nozzle clearance, dielectric elastomer film viscoelasticity, mechanical friction, and actuator torque generation on overall dynamic behavior of two different valve setups is discussed. Results show an overall shifting time of 200–300 ms when the friction of the nozzle and DEA actuation stretches are minimized. Low shifting time combined with compactness, simplicity, and low cost suggest that the low friction DEA-driven jet valves have great potential for switching a large number of pneumatic circuits in an MRI environment as well as in traditional pneumatic applications.
Polymer-based binary robots and mechatronics devices can lead to simple, robust, and cost effective solutions for Magnetic Resonnace Image-guided (MRI) medical procedures. A binary manipulator using 12 elastically averaged air muscles has been proposed for MRI-guided biopsies and brachytherapies procedures used for prostate cancer diagnostic and treatment. In this design, radially-distributed air muscles position a needle guide relatively to the MRI table. The system constitutes an active compliant mechanism where the compliance relieves the over-constraint imposed by the redundant parallel architecture. This paper presents experimental results for repeatability, accuracy, and stiffness of a fully functional manipulator prototype. Results show an experimental repeatability of 0.1 mm for point-to-point manipulation on a workspace diameter of 80 mm. Manipulator average accuracy is 4.7 mm when based on the nominal (uncalibrated) model and improves to 2.1 mm when using a calibrated model. The estimated stiffness at the end-effector is ∼0.95 N/mm and is sufficient to withstand the needle insertion forces without major deflection. Needle trajectories during state change appear to be primarily driven by the system’s elastic energy gradient. The study shows the manipulator prototype to meet its design criteria and to have the potential of becoming an effective and low-cost manipulator for MRI-guided prostate cancer treatment.
Affecting 1 out of 8 subjects in the U.S., prostate cancer is the most common form of cancer in men. Current medical procedures could be improved by the development of an MRI compatible (Magnetic Resonance Imaging) needle manipulator system, to precisely reach small tumors (<5 mm) inside the prostate. This paper presents and analyzes the potential of such a needle manipulator concept, based on hyper-redundant binary air muscles, all controlled by MRI compatible valves (e.g. piezoelectric or dielectric elastomer actuators). The proposed manipulator uses 12 polymer air muscles, each driven by 2 different actuation pressures, offering a total of 4096 (212) discrete needle positions. Based on a hyperelastic continuum mechanics air muscle model, a theoretical manipulator design is used to evaluate clinically-relevant design metrics, such as size, stiffness, workspace, accuracy and sensitivity. In this model, the manipulator’s equilibrium configuration (for a given set of input pressures and applied forces) is found by minimizing the system’s potential energy. The model capability is verified experimentally by a one degree of freedom (DOF) prototype. Simulation results show that the proposed elastically averaged air muscle concept can meet all design requirements. In particular, the needle workspace of about 70 mm by 80 mm entirely covers the prostate area, where targets are accurately reachable within 0.7 mm. Also, the pneumatic actuators can generate high forces leading to a system stiffness of ∼4.6 N/mm at the needle tip. Such stiffness can adequately sustain the needle during insertion with minimal deflection to guaranty accurate positioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.