To understand how commitment to cell division in late G1 phase (Start) is controlled by growth and nutrients in budding yeast, we determined the absolute concentrations of the G1/S transcription factors SBF (composed of Swi4 and Swi6) and MBF (composed of Mbp1 and Swi6), the transcriptional repressor Whi5, and the G1 cyclins, Cln1 and Cln2, in single live yeast cells using scanning number and brightness (sN&B) microscopy. In rich medium, Whi5, Mbp1, and Swi6 concentrations were independent of cell size, whereas Swi4 concentration doubled in G1 phase, leading to a size-dependent decrease in the Whi5/Swi4 ratio. In small cells, SBF and MBF copy numbers were insufficient to saturate target G1/S promoters, but this restriction diminished as cells grew in size. In poor medium, SBF and MBF subunits, as well as Cln1, were elevated, consistent with a smaller cell size at Start. A mathematical model constrained by sN&B data suggested that size- and nutrient-dependent occupancy of G1/S promoters by SBF/MBF helps set the cell size threshold for Start activation.
BackgroundPhagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood.ResultsHere, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes.ConclusionsThis suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.