Coherence-converted population transfer infrared-microwave double-resonance spectroscopy is used to record the infrared spectra of jet-cooled CH(3)OH and CH(3)OD. Population transfer induced by a pulsed IR laser is detected by Fourier transform microwave spectroscopy background-free using a two-MW pulse sequence. The observed spectrum of CH(3)OH in the nu(3) symmetric CH stretch region contains 12 interacting vibrational bands, whereas in CH(3)OD, only one vibrational band is observed in the same interval (2750-2900 cm(-1)). The bright state, responsible for the transitions observed in this region, is not just nu(3) but also contains an admixture of the binary CH bending combinations, particularly 2nu(5). The lack of interacting bands in CH(3)OD confirms that in CH(3)OH the binary combinations of the OH bend (nu(6)) and a CH bend (nu(4), nu(5), nu(10)) act as doorway states linking the bright state to higher order combination vibrations involving torsional excitation. A time-dependent interpretation of the frequency-resolved spectra reveals a fast (approximately 200 fs) initial decay of the bright state followed by a slower (1-2 ps) redistribution among the lower frequency modes.
Doppler-free transition frequencies for v 4-and v 5-excited hot bands have been measured in the ν 1 +ν 3 band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the 3 band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infrared absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100-7600 cm-1 energy region.
Infrared spectra of jet-cooled CH(3)OD and CH(3)OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH(3)OH only). Twagirayezu et al. reported the analysis of ν(3) symmetric CH stretch region (2750-2900 cm(-1); Twagirayezu et al. J. Phys. Chem. A 2010, 114, 6818), and the present work addresses the more complicated higher frequency region (2900-3020 cm(-1)) containing the two asymmetric CH stretches (ν(2) and ν(9)). The additional complications include a higher density of coupled states, more extensive mixing, and evidence for Coriolis as well as anharmonic coupling. The overall observed spectra contain 17 interacting vibrational bands for CH(3)OD and 28 for CH(3)OH. The sign and magnitude of the torsional tunneling splittings are deduced for three CH stretch fundamentals (ν(3), ν(2), ν(9)) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. Above 2900 cm(-1), the available doorway states are CH bending states, but below, the doorway states also involve OH bending. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (∼200 fs) initial decay of the bright state followed by a second, slower redistribution (about 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases.
Self-and nitrogen-broadened line shape data for the P e (11) line of the ν 1 + ν 3 band of acetylene, recorded using a frequency comb-stabilized laser spectrometer, have been analyzed using the Hartmann-Tran profile (HTP) line shape model in a multispectrum fitting. In total, the data included measurements recorded at temperatures between 125 K and 296 K and at pressures between 4 and 760 Torr. New, sub-Doppler, frequency comb-referenced measurements of the positions of multiple underlying hot band lines have also been made. These underlying lines significantly affect the P e (11) line profile at temperatures above 240 K and poorly known frequencies previously introduced errors into the line
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.