beta-amyloid (Abeta) has been proposed to play a role in the pathogenesis of Alzheimer's disease (AD). Deposits of insoluble Abeta are found in the brains of patients with AD and are one of the pathological hallmarks of the disease. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. In our current study, treatment with nitric oxide generators protected against Abeta-induced death, whereas inhibition of nitric oxide synthase afforded no protection, suggesting that formation of peroxynitrite is not critical for Abeta-mediated death. Previous studies have shown that aggregated Abeta can induce caspase-dependent apoptosis in cultured neurons. In all of the neuronal populations studied here (hippocampal neurons, sympathetic neurons, and PC12 cells), cell death was blocked by the broad spectrum caspase inhibitor N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone and more specifically by the downregulation of caspase-2 with antisense oligonucleotides. In contrast, downregulation of caspase-1 or caspase-3 did not block Abeta(1-42)-induced death. Neurons from caspase-2 null mice were totally resistant to Abeta(1-42) toxicity, confirming the importance of this caspase in Abeta-induced death. The results indicate that caspase-2 is necessary for Abeta(1-42)-induced apoptosis in vitro.
beta-Amyloid (A beta) has been strongly implicated in the pathophysiology of Alzheimer's disease (AD), but the means by which the aggregated form of this molecule induces neuronal death have not been fully defined. Here, we examine the role of the c-Jun N-terminal kinases (JNKs) and of their substrate, c-Jun, in the death of cultured neuronal PC12 cells and sympathetic neurons evoked by exposure to aggregated A beta. The activities of JNK family members increased in neuronal PC12 cells within 2 h of A beta treatment and reached 3--4-fold elevation by 6 h. To test the role of these changes in death caused by A beta, we examined the effects of CEP-1347 (KT7515), an indolocarbazole that selectively blocks JNK activation. Inclusion of CEP-1347 (100--300 nM) in the culture medium effectively blocked the increases in cellular JNK activity caused by A beta and, at similar concentrations, protected both PC12 cells and sympathetic neurons from A beta-evoked-death. Effective protection required addition of CEP-1347 within 2 h of A beta treatment, indicating that the JNK pathway acts relatively proximally and as a trigger in the death mechanism. A dominant-negative c-Jun construct also conferred protection from A beta-evoked death, supporting a model in which JNK activation contributes to death via activation of c-Jun. Finally, CEP-1347 blocked A beta-stimulated activation of caspase-2 and -3, placing these downstream of JNK activation. These observations implicate the JNK pathway as a required element in death evoked by A beta and hence identify it as a potential therapeutic target in AD.
In many instances, the establishment of highly specific neuronal connections during development results from the rearrangement of axonal projections through the trimming of exuberant collaterals or the elimination of functional synapses or both. Although the involvement of the N-methyl D-aspartate (NMDA) subtype of the glutamate receptor has been demonstrated in the shaping of axonal arbors, its participation in the process of selective stabilization of synapses remains an open issue. In this study, the effects of chronic in vivo application of D,L-2-amino-5-phosphonovaleric acid (D,L-APV), a selective antagonist of the NMDA receptor, on the synapse elimination process that takes place in the developing cerebellum of the rat have been analyzed. D,L-APV treatment prevented the regression of supernumerary climbing fiber synapses in 49 percent of the recorded Purkinje cells, while the inactive isomer L-APV was ineffective. Thus, activation of the NMDA receptor is a critical step in the regression of functional synapses during development.
The data presented here demonstrate that sympathetic neurons have the potential to activate two alternative caspasedependent pathways either of which is capable of mediating death induced by NGF deprivation and that these neurons have the potential to switch from one pathway to the other. The presence of these two alternative pathways to trophic factor deprivation-induced death may have implications for ensuring the correct development of the nervous system. In wild-type neurons, a caspase-2-dependent pathway is required for death, and a caspase-9-dependent pathway appears to be suppressed by endogenous inhibitors of apoptosis proteins (IAPs). In contrast, for caspase-2-null neurons, death is dependent on the caspase-9 pathway. The mechanism underlying the shift is the result of a threefold compensatory elevation of caspase-9 expression and a doubling of levels of direct IAP binding protein with low pI (DIABLO)/second mitochondriaderived activator of caspase (Smac), an IAP inhibitor, both at the mRNA and protein levels. These findings resolve seemingly discrepant findings regarding the roles of various caspases after NGF deprivation and raise a cautionary note regarding the interpretation of findings with caspase-null animals. The choice of the death-mediating caspase pathway in the sympathetic neurons is thus dependent on the regulated relative expression of components of the pathways including those of caspases, IAPs, and IAP inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.