Spinal muscle atrophy (SMA) is an autosomal recessive neurodegenerative disease which is characterized by the loss of alpha motor neurons resulting in progressive muscle atrophy. Reduced amount of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene is the cause of SMA. A potential treatment strategy for SMA is to upregulate levels of SMN protein originating from the SMN2 gene compensating in part for the absence of functional SMN1 gene. Although there exists a sizeable literature on SMN2 inducing compounds, there is comparatively less known about the signaling pathways which modulate SMN levels. Here, we report a significant induction in SMN mRNA and protein following p38 activation by Anisomycin. We demonstrate that Anisomycin activation of p38 causes a rapid cytoplasmic accumulation of HuR, a RNA binding protein which binds to and stabilizes the AU-rich element within the SMN transcript. The stabilization of SMN mRNA, rather than transcriptional induction results in an increase in SMN protein. Our demonstration of SMN protein regulation through the p38 pathway and the role of HuR in this modulation may help in the identification and characterization of p38 pathway activators as potential therapeutic compounds for the treatment of SMA.
The neuronal apoptosis inhibitory protein (NAIP) gene, also known as the baculovirus inhibitor of apoptosis repeat-containing protein 1 (BIRC1) gene, is a member of the inhibitors of apoptosis (IAP) family and was first characterized as a candidate gene for spinal muscular atrophy (SMA). The expression of NAIP has been thoroughly studied in the central nervous system and overlaps the pattern of neurodegeneration in SMA. Recent studies have pointed to a role for NAIP in non-neuronal cells. We report here the production of a specific anti-NAIP antibody and the profile of NAIP expression in human adult tissues by Western blot and immunohistochemical detection methods. NAIP was detected in a number of tissues by Western blot analysis, but immunohistochemistry revealed that NAIP's presence in certain tissues, such as liver, lung, and spleen, is most likely due to macrophage infiltration. In the small intestine, the expression of NAIP coincides with the expression of p21WAF1. This observation, coupled with findings from other groups, suggests a role for NAIP in increasing the survival of cells undergoing terminal differentiation as well as the possibility that the protein serves as an intestinal pathogen recognition protein. This manuscript contains online supplemental material at http://www.jhc.org . Please visit this article online to view these materials.
Spinal muscular atrophy (SMA) is caused by survival of motor neuron (SMN) deficiency, leading to specific motor neuron attrition. The time course and molecular pathophysiologic etiology of motor neuron loss observed in SMA remains obscure. Mice heterozygous for Smn show up to 50% motor neuron attrition by 6 months of age and are used as a model for mild SMA in humans. To determine both the rate of cellular loss and the molecular events underlying motor neuron degeneration in SMA, motor neuron counts and mRNA quantification were performed in spinal cords of Smn(+/-) mice and wild-type littermates. Surprisingly, despite the chronic, subclinical nature of motor neuron loss, we find that the bulk of the loss occurs by 5 weeks of age. RNA isolated from the spinal cords of 5 week-old Smn(+/-) mice subjected to microarray analysis reveal alterations in genes involved in RNA metabolism, apoptosis and transcriptional regulation including a general perturbation of transcripts coding for calcium binding proteins. A subset of these changes in expression was further characterized by semi-quantitative RT-PCR and Western blot analysis at various time points. Taken together, these results indicate that spinal cord cells present the first signs of the apoptotic process consistent with a response to the stress of Smn depletion. A picture of comparatively rapid neuronal attrition in spite of the very mild nature of SMA is obtained. Furthermore, changes occur, which may be reactive to and not causative of the cellular loss, involving central cellular functions as well as calcium modulating proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.