Structure-function studies of antibody-antigen systems include the identification of amino acid residues in the antigen that interact with an antibody and elucidation of their individual contributions to binding affinity. We used fluorescence correlation spectroscopy (FCS) and alanine-scanning mutagenesis to characterize the interactions of brain natriuretic peptide (BNP) with two monoclonal antibodies. Human BNP is a 32 amino acid residue long cyclic polypeptide with the ring structure confined between cysteines in positions 10 and 26. It is an important cardiovascular hormone and a valuable diagnostic cardiac marker. We compare the binding strength of the N-terminus Alexa488-labeled BNP, native cyclic BNP, BNP alanine-substituted mutants, linear BNP, and its short fragments to determine the individual contributions of amino acid residues included in the continuous antigenic epitopes that are recognized by two different monoclonal antibodies raised toward BNP. Implementation of FCS for these studies offers all of the advantages of solution phase measurements, including high sensitivity, simplicity of manipulation with reagents, and elimination of solid phase interferences or separation steps. Significant differences in the molecular masses of the free and antibody bound BNP results in a substantial ( approximately 2.5-times) increase in the diffusion rates. Determination of the binding constants and inhibition effects by measuring the diffusion rates of the ligand at the single molecule level introduces the ultimate opportunity for researching systems where the fluorescence intensity and/or fluorescence anisotropy do not change upon interaction of the ligand with the protein. Monoclonal antibodies 106.3 and BC203 demonstrate high affinities to BNP and bind two distant epitopes forming robust antibody sandwiches. Both antibodies are used in Abbott diagnostic assays on AxSYM, IMx, and Architect platforms.
The stability of seven commonly monitored therapeutic drugs in serum was examined following storage in Vacutainer SST and Corvac serum separator blood collection tubes. Significant decreases (ranging from 5.9% to 64.5%) in the measured concentrations of phenytoin, phenobarbital, lidocaine, quinidine, and carbamazepine were observed, as a function of both time and sample volume, when serum was stored in Vacutainer SST serum separator blood collection tubes. In contrast, measured concentrations of theophylline and salicylate did not change under identical specimen storage conditions. No significant changes in the concentrations of phenytoin, phenobarbital, carbamazepine, theophylline, quinidine, and salicylate were observed when serum was stored in Corvac serum separator blood collection tubes. Only serum lidocaine concentrations decreased (ranging from 31.5% to 72.6%, depending on sample volume) after storage in Corvac tubes for 24 hours. The apparent decreases in serum concentrations of therapeutic drugs in both Vacutainer SST and Corvac tubes were most pronounced when small volumes (200-500 microL) of serum remained in contact with the barrier gels for prolonged periods of time (> 2-6 hours). These decreases were due to absorption of drugs by the barrier gels, as demonstrated by the recovery of drugs following chemical extraction of the barrier gels with methanol. For phenytoin and phenobarbital, the reduction in total drug concentrations also resulted in a proportional decrease in free drug concentrations and was dependent on the extent of protein binding by the drug. None of the therapeutic drugs used in this study were adversely affected by prolonged storage in standard red top Vacutainer blood collection tubes without barrier gels. The data suggest that serum separator blood collection tubes should be used with extreme caution for therapeutic drug monitoring, particularly when reduced sample volumes or prolonged specimen storage may be required.
Participants of the Second International Workshop (WS) on human chorionic gonadotropin (hCG) of the International Society of Oncology and Biomarkers Tissue Differentiation 7 (ISOBM TD-7) have characterized in detail a panel of 69 antibodies (Abs) directed against hCG and hCG-related variants that were submitted by eight companies and research groups. Specificities of the Abs were determined using the First WHO International Reference Reagents for six hCG variants, i.e., hCG, hCGn, hCGβ, hCGβn, hCGβcf, and hCGα, which are calibrated in SI units, and hLH. Molecular epitope localizations were assigned to the ISOBM-mAbs by comparing ISOBM-Ab specificity, sandwich compatibility, and mutual inhibition profiles, to those of 17 reference monoclonal (m)Abs of known molecular epitope specificities. It appeared that 48 Abs recognized hCGβ-, 8 hCGα-, and 13 αβ-heterodimer-specific epitopes. Twenty-seven mAbs were of pan hCG specificity, two thereof with no (<0.1 %; epitope β1), 12 with low (<1.0 %; epitopes β2/4), and 13 with high (>>1 %; epitopes β3/5) hLH cross-reactivity. The majority of hCGβ epitopes recognized were located in two major antigenic domains, one on the peptide chain of the tips of β-sheet loops 1 and 3 (epitopes β2–6; 27 mAbs) and the second around the cystine knot (e.g., epitopes β1, β7, and β10; 9 mAbs). Four mAbs recognized epitopes on hCGβcf-only (e.g., epitopes β11 and β13) and six mAbs epitopes on the remote hCGβ-carboxyl-terminal peptide (epitopes β8 and β9 corresponding to amino acids 135–144 and 111–116, respectively). For routine diagnostic measurements, methods are used that either detect hCG-only, hCGβ-only, or hCG together with hCGβ or hCG together with hCGβ and hCGβcf. Sandwich assays that measure hCG plus hCGβ and eventually hCGβcf should recognize the protein backbone of the analytes preferably on an equimolar basis, should not cross-react with hLH and not be susceptible to blunting of signal by nonmeasured variants like hCGβcf. Such assays can be constructed using pairs of mAbs directed against the cystine knot-associated epitope β1 (Asp10, Asp60, and Gln89) in combination with epitopes β2 or β4 located at the top of β-sheet loops 1 + 3 of hCGβ involving aa hCGβ20-25 + 68-77. In summary, the results of the First and Second ISOBM TD-7 WSs on hCG provide the basis for harmonization of specificities and epitopes of mAbs to be used in multifunctional and selective diagnostic hCG methods for different clinical purposes.Electronic supplementary materialThe online version of this article (doi:10.1007/s13277-013-0994-6) contains supplementary material, which is available to authorized users.
B-type natriuretic peptide (BNP) is a naturally secreted regulatory hormone that influences blood pressure and vascular water retention in human physiology. The plasma BNP concentration is a clinically recognized biomarker for various cardiovascular diseases. Quantitative detection of BNP can be achieved in immunoassays using the high-affinity monoclonal IgG1 antibody 106.3, which binds an epitope spanning residues 5-13 of the mature bioactive peptide. To understand Proteins 2009; 76:536-547. V V C 2009 Wiley-Liss, Inc.Key words: brain natriuretic peptide (BNP); diagnostic biomarker; antibody X-ray structure; antibody-antigen interactions; thermodynamic analysis; diffusion-limited mechanism. PROTEINS
The recent remarkable rise in biomedical applications of antibodies and their recombinant constructs has shifted the interest in determination of antigenic epitopes in target proteins from the areas of protein science and molecular immunology to the vast fields of modern biotechnology. In this article, we demonstrated that measuring binding induced changes in two-dimensional NMR spectra enables rapid determination of antibody binding footprints on target protein antigens. Such epitopes recognized by six high-affinity monoclonal murine antibodies (mAbs) against human neutrophil gelatinase-associated lipocalin (NGAL) were determined by measuring chemical shifts or broadening of peaks in (1)H-(15)N-TROSY HSQC and (1)H-(13)C HSQC spectra of isotope-labeled NGAL occurring upon its binding to the antibodies. Locations of the epitopes defined by the NMR studies are in good agreement with the results of antibody binding pairing observed by dual-color fluorescence cross-correlation spectroscopy. In all six cases, the antibodies recognize conformational epitopes in regions of relatively rigid structure on the protein. None of the antibodies interact with the more flexible funnel-like opening of the NGAL calyx. All determined epitope areas in NGAL reflect the dimensions of respective antibody binding surface (paratopes) and contain amino acid residues that provide strong interactions. This NMR-based approach offers comprehensive information on antigenic epitopes and can be applied to numerous protein targets of diagnostic or therapeutic interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.