In Alagille syndrome, routine follow-up imaging of the liver plays an important role in detecting early parenchymal changes and to evaluate portal hypertension. Modern contrast-enhanced imaging methods not only allow early detection of focal liver lesions, but also enable further characterization of their nature and guide biopsy procedures. We present the US and MR imaging findings of hepatocellular carcinoma and a regenerating nodule in a 3-year-old child with Alagille syndrome.
Nephroblastoma prognosis has dramatically improved, but an unfavourable prognostic subgroup warrants development of novel therapeutic strategies. Selective KIT, PDGFRalpha and epidermal growth factor receptor (EGFR) tyrosine kinase inhibition evolved as powerful targeted therapy for gastrointestinal stromal tumours and non-small-cell lung cancer. To investigate a potential role for tyrosine kinase inhibition, we analyzed 209 nephroblastomas for immunohistochemical KIT and EGFR expression, 63 nephroblastomas for mutations in KIT exons 9, 11, 13, EGFR exons 18, 19, 20 and 21, and all 209 nephroblastomas for PDGFRalpha exons 12, 14 and 18. Twenty-two tumours (10.5%) expressed KIT, 31 (14.8%) EGFR, and 10 (4.8%) both KIT and EGFR, respectively. KIT expression was relatively more common among high-risk tumours (6/27; 22.3%) compared to low-/intermediate-risk tumours (26/181; 14.4%). Nine patients deceased, four of which had high-risk tumours with KIT expression in two of four and EGFR expression in one of four. There were no KIT, PDGFRalpha or EGFR mutations. Our results suggest no significant contribution of KIT, EGFR or PDGFRalpha mutations to nephroblastoma pathogenesis. Despite a trend towards association of immunohistochemical KIT and EGFR expression with poor outcome in high-risk nephroblastomas, statistical analysis did not yield significant correlations in this subgroup. Therefore, it remains open if KIT, PDGFRalpha or EGFR tyrosine kinase inhibition constitute a therapeutic target in nephroblastoma in the absence of KIT, PDGFRalpha or EGFR mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.