Multiple myeloma (MM) pathogenesis and progression largely rely on the cells and extracellular factors in the bone marrow (BM) microenvironment. Compelling studies have identified tumour exosomes as key regulators in the maintenance and education of the BM microenvironment by targeting stromal cells, immune cells, and vascular cells. However, the role of MM exosomes in the modification of the BM microenvironment and MM progression remains unclear. Here, we explored the functions of MM exosomes in angiogenesis and immunosuppression in vitro and in vivo. Murine MM exosomes carrying multiple angiogenesis-related proteins enhanced angiogenesis and directly promoted endothelial cell growth. Several pathways such as signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase, and p53 were modulated by the exosomes in endothelial and BM stromal cells. These exosomes promoted the growth of myeloid-derived suppressor cells (MDSCs) in naive mice through activation of the STAT3 pathway and changed their subsets to similar phenotypes to those seen in MM-bearing mice. Moreover, MM exosomes up-regulated inducible nitric oxide synthase and enhanced the immunosuppressive capacity of BM MDSCs in vivo. Our data show that MM exosomes modulate the BM microenvironment through enhancement of angiogenesis and immunosuppression, which will further facilitate MM progression. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment wherein communication through different factors including extracellular vesicles takes place. This cross-talk not only leads to drug resistance but also to the development of osteolysis. Targeting vesicle secretion could therefore simultaneously ameliorate drug response and bone disease. In this paper, we examined the effects of MM exosomes on different aspects of osteolysis using the 5TGM1 murine model. We found that 5TGM1 sEVs, or ‘exosomes’, not only enhanced osteoclast activity, they also blocked osteoblast differentiation and functionality in vitro. Mechanistically, we could demonstrate that transfer of DKK-1 led to a reduction in Runx2, Osterix, and Collagen 1A1 in osteoblasts. In vivo, we uncovered that 5TGM1 exosomes could induce osteolysis in a similar pattern as the MM cells themselves. Blocking exosome secretion using the sphingomyelinase inhibitor GW4869 not only increased cortical bone volume, but also it sensitized the myeloma cells to bortezomib, leading to a strong anti-tumor response when GW4869 and bortezomib were combined. Altogether, our results indicate an important role for exosomes in the BM microenvironment and suggest a novel therapeutic target for anti-myeloma therapy.
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Multiple myeloma (MM) is well-known for the development of drug resistance, leading to relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics assay on MM patient plasma, we aimed to identify new targets. We observed a dysregulation in the sphingolipid metabolism, with the upregulation of several ceramides and downregulation of sphingomyelin. This imbalance suggests an increase in sphingomyelinase, the enzyme responsible for hydrolyzing sphingomyelin into ceramide. We confirmed the upregulation of acid sphingomyelinase (ASM) in primary MM cells. Furthermore, we observed an increase in ASM expression in MM cell lines treated with melphalan or bortezomib, as well as in their exosomes. Exosomes high in ASM content were able to transfer the drug-resistant phenotype to chemosensitive cells, hereby suggesting a tumor-protective role for ASM. Finally, inhibition of ASM by amitriptyline improved drug sensitivity in MM cell lines and primary MM cells. In summary, this study is the first to analyze differences in plasma lipid composition of MM patients and match the observed differences to an upregulation of ASM. Moreover, we demonstrate that amitriptyline is able to inhibit ASM and increase sensitivity to anti-myeloma drugs. This study, therefore, provides a rational to include ASM-targeting-drugs in combination strategies in myeloma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.