Resolution of inflammation is essential for tissue homeostasis and a promising approach to inflammatory disorders. Here we found that DEL-1, a secreted protein inhibiting leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and murine periodontitis, waning of inflammation correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium urate crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver-X-receptor-dependent macrophage reprogramming to pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte recruitment action to endothelial-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.
Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid hormone in humans, produced by the adrenals, the gonads and the brain. DHEA was previously shown to bind to the nerve growth factor receptor, tropomyosin-related kinase A (TrkA), and to thereby exert neuroprotective effects. Here we show that DHEA reduces microglia-mediated inflammation in an acute lipopolysaccharide-induced neuro-inflammation model in mice and in cultured microglia in vitro. DHEA regulates microglial inflammatory responses through phosphorylation of TrkA and subsequent activation of a pathway involving Akt1/Akt2 and cAMP response element-binding protein. The latter induces the expression of the histone 3 lysine 27 (H3K27) demethylase Jumonji d3 (Jmjd3), which thereby controls the expression of inflammation-related genes and microglial polarization. Together, our data indicate that DHEA-activated TrkA signaling is a potent regulator of microglia-mediated inflammation in a Jmjd3-dependent manner, thereby providing the platform for potential future therapeutic interventions in neuro-inflammatory pathologies.
Inflammation-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is central to the course of systemic inflammatory response syndrome or sepsis. The underlying mechanisms, however, are not well understood. Initial activation of adrenocortical hormone production during early sepsis depends on the stimulation of hypothalamus and pituitary mediated by cytokines; in late sepsis, there is a shift from neuroendocrine to local immuneadrenal regulation of glucocorticoid production. Therefore, the modulation of the local immune-adrenal cross talk, and not of the neuroendocrine circuits involved in adrenocorticotropic hormone production, may be more promising in the prevention of the adrenal insufficiency associated with prolonged sepsis. In the present work, we investigated the function of the crucial Toll-like receptor (TLR) adaptor protein myeloid differentiation factor 88 (MyD88) in systemic and local activation of adrenal gland inflammation and glucocorticoid production mediated by lipopolysachharides (LPSs). To this end, we used mice with a conditional MyD88 allele. These mice either were interbred with Mx1 Cre mice, resulting in systemic MyD88 deletion, predominantly in the liver and hematopoietic system, or were crossed with Akr1b7 Cre transgenic mice, resulting thereby in deletion of MyD88, which was adrenocortical-specific. Although reduced adrenal inflammation and HPAaxis activation mediated by LPS were found in Mx1Cre+ -MyD88 fl/fl mice, adrenocortical-specific MyD88 deletion did not alter the adrenal inflammation or HPA-axis activity under systemic inflammatory response syndrome conditions. Thus, our data suggest an important role of immune cell rather than adrenocortical MyD88 for adrenal inflammation and HPA-axis activation mediated by LPS.adrenal gland insufficiency | Toll-like receptors | the HPA axis S epsis and septic shock are major causes of death in intensivecare units worldwide and show an increasing incidence (1). In sepsis, excessive, uncontrolled activation of the immune system is harmful to the host and leads to multiorgan failure and death. Adrenal glucocorticoid production plays a beneficial role in response to systemic inflammation by counteracting hyperactivation of the immune system. However, in many critically ill patients, this homeostatic activation of adrenocortical hormone secretion is impaired (2). It has been estimated that 60% of critically ill patients show an abnormal adrenal glucocorticoid response to administration of exogenous adrenocorticotropic hormone (ACTH) (3).Adrenal hormone production in sepsis is thought to be regulated by cytokines that elevate hypothalamic corticotropin releasing hormone (CRH) levels. CRH, in turn, produces the release of pituitary ACTH-the main regulator of synthesis of adrenal glucocorticoid hormones (4). It is generally accepted that patternrecognition receptors such as Toll-like receptors (TLRs) play a substantial role in hypothalamic-pituitary-adrenal (HPA) axis activation induced by pathogens. This activation, in turn, may be a...
Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.