Pentose phosphate pathway and isocitrate dehydrogenase are generally considered to be the major sources of the anabolic reductant NADPH. As one of very few microbes, Escherichia coli contains two transhydrogenase isoforms with unknown physiological function that could potentially transfer electrons directly from NADH to NADP ؉ and vice versa. Using defined mutants and metabolic flux analysis, we identified the proton-translocating transhydrogenase PntAB as a major source of NADPH in E. coli. During standard aerobic batch growth on glucose, 35-45% of the NADPH that is required for biosynthesis was produced via PntAB, whereas pentose phosphate pathway and isocitrate dehydrogenase contributed 35-45% and 20 -25%, respectively. The energy-independent transhydrogenase UdhA, in contrast, was essential for growth under metabolic conditions with excess NADPH formation, i.e. growth on acetate or in a phosphoglucose isomerase mutant that catabolized glucose through the pentose phosphate pathway. Thus, both isoforms have divergent physiological functions: energy-dependent reduction of NADP ؉ with NADH by PntAB and reoxidation of NADPH by UdhA. Expression appeared to be modulated by the redox state of cellular metabolism, because genetic and environmental manipulations that increased or decreased NADPH formation down-regulated pntA or udhA transcription, respectively. The two transhydrogenase isoforms provide E. coli primary metabolism with an extraordinary flexibility to cope with varying catabolic and anabolic demands, which raises two general questions: why do only a few bacteria contain both isoforms, and how do other organisms manage NADPH metabolism?About 1,000 anabolic reactions synthesize the macromolecular components that make up functional cells (1, 2), but only 11 intermediates of central carbon metabolism and the cofactors ATP, NADH, and NADPH constitute the core of this intricate biochemical network (3, 4). These intermediates and cofactors must be supplied through the catabolism of different substrates at appropriate rates and stoichiometries for balanced growth; hence, anabolism and catabolism are delicately balanced and regulated to enable growth under fluctuating environmental conditions. Although chemically very similar, the redox cofactors NADH and NADPH serve distinct biochemical functions and participate in more than 100 enzymatic reactions (5). The electrons of the main respiratory cofactor NADH are transferred primarily to oxygen, thereby driving oxidative phosphorylation of ADP to ATP (3,4,6). NADPH, in contrast, exclusively drives anabolic reduction reactions. Despite the important role in linking the fundamental processes of catabolism and anabolism, however, even a qualitative understanding of NADPH metabolism is still missing for most organisms.The primary NADPH-generating reactions are considered to be the oxidative pentose phosphate (PP) 1 pathway and the NADPH-dependent isocitrate dehydrogenase in the TCA cycle (Fig.
Blocking glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (Pgi) in Escherichia coli led to a greatly reduced maximum specific growth rate. Examination of the operational catabolic pathways and their flux ratios using [U-(13)C(6)]glucose-labeling experiments and metabolic flux ratio analysis provide evidence for the pentose phosphate (PP) pathway as the primary route of glucose catabolism in the knock-out mutant. The resulting extensive flux through the PP pathway disturbs apparently the reducing power balance, since overexpression of the recently identified soluble transhydrogenase UdhA improves significantly the growth rate of the Pgi mutant. The presented results provide first evidence that UdhA restores the cellular redox balance by catalyzing electron transfer from NADPH to NADH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.