We report the identification and molecular characterization of a novel type of constitutive nuclear protein that is present in diverse vertebrate species, from Xenopus laevis to human. The cDNA-deduced amino acid sequence of the Xenopus protein defines a polypeptide of a calculated mass of 146.2 kDa and a isoelectric point of 6.8, with a conspicuous domain enriched in the dipeptide TP (threonine-proline) near its amino terminus. Immunolocalization studies in cultured cells and tissues sections of different origin revealed an exclusive nuclear localization of the protein. The protein is diffusely distributed in the nucleoplasm but concentrated in nuclear speckles, which represent a subnuclear compartment enriched in small nuclear ribonucleoprotein particles and other splicing factors, as confirmed by colocalization with certain splicing factors and Sm proteins. During mitosis, when transcription and splicing are downregulated, the protein is released from the nuclear speckles and transiently dispersed throughout the cytoplasm. Biochemical experiments have shown that the protein is recovered in a ϳ12S complex, and gel filtration studies confirm that the protein is part of a large particle. Immunoprecipitation and Western blot analysis of chromatographic fractions enriched in human U2 small nuclear ribonucleoprotein particles of distinct sizes (12S, 15S, and 17S), reflecting their variable association with splicing factors SF3a and SF3b, strongly suggests that the 146-kDa protein reported here is a constituent of the SF3b complex. INTRODUCTIONBiochemical fractionations and the use of antibodies to analyze the distribution of proteins in situ as well as recombinant DNA technologies have led to the identification of macromolecular domains within the mammalian cell nucleus. Beyond such obvious features as the nucleolus, heterochromatin, and the nuclear membrane, several particulate nuclear elements (termed "nuclear granules" or "nuclear dots") have been described that can be correlated with fundamental nuclear processes, e.g., transcription, RNA splicing, and processing of mature mRNA (reviewed by Spector, 1993).Splicing occurs in a multicomponent complex termed the spliceosome. Many of the detailed biochemical steps involved in the pre-mRNA splicing reaction have been extensively studied in vitro and are well understood (reviewed by Green, 1991;Moore et al., 1993). The major constituents of the spliceosome are the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs; reviewed by Baserga and Steitz, 1993). Moreover, spliceosomes are associated with numerous non-snRNP splicing factors, several of which have been purified and cloned (reviewed by Krämer, 1996;Will and Lü hrmann, 1997). Immunolocalization studies have revealed that proteins involved in pre-mRNA maturation tend to be heterogeneously distributed in the nucleus, suggesting that the processing reactions might be compartmentalized in vivo (Carter et al., 1993; however, see also Huang and Spector, 1996). In addition to the widespread nucleop...
The peripheral nervous system comprises the autonomic and sensory (afferent) nervous systems. Major advances in our understanding of the autonomic and sensory transmission and function include the recognition of the phenotypic expression of a variety of transmitters and modulators that often coexist in individual neurons, the concept of co-transmission and chemical coding, the evidence for local effector functions of primary afferent nerves, and the discovery of plasticity of both the autonomic and the sensory nervous system during development, aging, diseases states, and inflammation. Co-transmission or plurichemical transmission, which indicates the release of more than one chemical messenger from the same neuron, enables autonomic and sensory neurons to exert a fine and highly regulated control of various functions such as circulation and immune response. The concept of chemical coding, in which the combination of transmitters/modulators is established, allows the identification of functional classes of neurons with their projections and targets. In addition to transmitters and modulators, autonomic and sensory neurons express multiple receptors, including G-proteincoupled and ion-gated receptors, further supporting the complexity of autonomic and sensory transmission and function. Autonomic neurons regulate the internal environment and maintain multiple homeostatic functions, and sensory neurons act as receptive structures that activate their targets in response to stimulation but also exert effector functions including the control of blood flow and vascular permeability, maintenance of mineralized tissue, and regulation of gene expression. Neurophysiology of painThe nociceptive system supports two sensory functions, pain and itch. Itch has often been regarded as a minor form of pain. Recently, it has been shown, however, that the pruritic system is supported by its own peripheral and central neuronal pathways which are closely associated, although antagonistic in some POMC processing in human melanocytes has been widely documented, and the a-MSH/MC1R/cAMP cascade has been implicated in the control of pigmentation. Only very recently, a role of b-endorphin, one cleavage product of b-LPH, has been demonstrated to influence melanocyte growth, dendricity and melanin biosynthesis via the m-opiate receptor. However, much earlier, it was shown that b-MSH, the other cleavage product of b-LPH, controls melanogenesis and melanin transfer in amphibians. To date, a specific receptor for b-MSH has not been identified. Earlier POMC processing has been found in melanosomes. Therefore, an MC1R-independent role of a-MSH was postulated and demonstrated in control of 6-tetrahydrobiopterin (6BH 4 )inhibited tyrosinase. Utilizing the depigmentation disorder vitiligo, we were now able to follow the fate of epidermal POMC processing in the presence of mM levels of hydrogen peroxide (H 2 O 2 ). In vitiligo epidermal PC2 and 7B2 protein expression is increased, whereas a-MSH, b-MSH and b-endorphin are significantly decreased. Analys...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.