Human induced pluripotent stem cell (hiPSC) derived angiogenesis models present a unique opportunity for patient-specific platforms to study the complex process of angiogenesis and the endothelial cell response to biomaterial and biophysical changes in a defined microenvironment. We present a refined method for differentiating hiPSCs into a CD31+ endothelial cell population (hiPSC-ECs) using a single basal medium from pluripotency to the final stage of differentiation. This protocol produces endothelial cells that are functionally competent in assays following purification. Subsequently, an in vitro angiogenesis model was developed by encapsulating the hiPSC-ECs into a tunable, growth factor sequestering hyaluronic acid (HyA) matrix where they formed stable, capillary-like networks that responded to environmental stimuli. Perfusion of the networks was demonstrated using fluorescent beads in a microfluidic device designed to study angiogenesis. The combination of hiPSC-ECs, bioinspired hydrogel, and the microfluidic platform creates a unique testbed for rapidly assessing the performance of angiogenic biomaterials.
Human cardiovascular tissue and diseases are difficult to study for novel drug discovery and fundamental cellular/molecular processes due to limited availability of physiologically-relevant models in vitro.[1–3] Animal models may resemble human heart structure, however there are significant differences from human cardiovascular physiology including biochemical signaling, and gene expression.[4–6] In vitro microfluidic tissue models provide a less expensive, more controlled, and reproducible platform for better quantification of isolated cellular processes in response to biochemical or biophysical stimulus.[6–12] The capillary driven-flow microfluidic device in this study was manufactured with a 3D stereolithography (SLA) printed mold and is a closed circuit system operating on principles of capillary action allowing continuous fluid movement without external power supply. Human umbilical vein endothelial cells (HUVECs) and human cardiomyocytes (AC16) were encapsulated into a fibrin hydrogel to form vascular (VTM) and cardiac (CTM) tissue models respectively. To determine response to biophysical stimulus, the 3D cardiovascular tissue was directly loaded into the device tissue culture chambers that either had no microposts (DWoP) or microposts (DWPG) for 1, 3 and 5 days. The tissues were analyzed with fluorescent microscopy for morphological differences, average tube length, and cell orientation between tissues cultured in both conditions. In DWPG VTMs displayed capillary-like tube formation with visible cell alignment and orientation, while AC16s continued to elongate around microposts by day 5. VTM and CTM models in devices with posts (DWPG) displayed cell alignment and orientation after 5 days, indicated the microposts induced biophysical cues to guide cell structure and specific organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.