The quality and value of the carcass in domestic meat animals are reflected in its protein and fat content. Preadipocytes and adipocytes are important in establishing the overall fatness of a carcass, as well as being the main contributors to the marbling component needed for consumer preference of meat products. Although some fat accumulation is essential, any excess fat that is deposited into adipose depots other than the marbling fraction is energetically unfavorable and reduces efficiency of production. Hence, this review is focused on current knowledge about the biology and regulation of the important cells of adipose tissue: preadipocytes and adipocytes.
With continued efforts to find solutions to rising rates of obesity and diabetes, there is increased interest in the potential health benefits of the use of low- and no-calorie sweeteners (LNCSs). Concerns about safety often deter the use of LNCSs as a tool in helping control caloric intake, even though the safety of LNCS use has been affirmed by regulatory agencies worldwide. In many cases, an understanding of the biological fate of the different LNSCs can help health professionals to address safety concerns. The objectives of this review are to compare the similarities and differences in the chemistry, regulatory status, and biological fate (including absorption, distribution, metabolism, and excretion) of the commonly used LNCSs: acesulfame potassium, aspartame, saccharin, stevia leaf extract (steviol glycoside), and sucralose. Understanding the biological fate of the different LNCSs is helpful in evaluating whether reports of biological effects in animal studies or in humans are indicative of possible safety concerns. Illustrations of the usefulness of this information to address questions about LNCSs include discussion of systemic exposure to LNCSs, the use of sweetener combinations, and the potential for effects of LNCSs on the gut microflora.
In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation, adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1 cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines. Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our understanding of adipocyte biology.
Meat animals are unique as experimental models for both lipid metabolism and adipocyte studies because of their direct economic value for animal production. This paper discusses the principles that regulate adipogenesis in major meat animals (beef cattle, dairy cattle, and pigs), the definition of adipose depot-specific regulation of lipid metabolism or adipogenesis, and introduces the potential value of these animals as models for metabolic research including mammary biology and the ontogeny of fatty livers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.