SummaryThe velvet protein VeA is a global fungal regulator for morphogenetic pathways as well as for the control of secondary metabolism. It is found exclusively in filamentous fungi, where it fulfills conserved, but also unique functions in different species. The involvement of VeA in various morphogenetic and metabolic pathways is probably due to spatially and timely controlled specific protein-protein interactions with other regulators such as phytochrome (FphA) or velvet-like proteins (VelB). Here we present evidence that Aspergillus nidulans VeA is a multi-phosphorylated protein and hypothesize that at least four specific amino acids (T167, T170, S183 and Y254) undergo reversible phosphorylation to trigger development and sterigmatocystin biosynthesis. Double mutation of T167 to valine and T170 to glutamic acid exerted the largest effects with regards to sexual development and veA gene expression. In comparison with wild-type VeA, which shuttles out of the nuclei after illumination this VeA variant showed stronger nuclear accumulation than the wild type, independent of the light conditions. The interaction between VeA and VelB or FphA, respectively, was affected in the T167V-T170E mutant. Our results suggest complex regulation of the phosphorylation status of the VeA protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.