Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (−)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6, and MutL homologue 1 were analyzed in C57BL/6J male mice fed a high-fat diet (HFD) or a control diet (CD) with and without EGCG supplementation. Gut microbiota was analyzed with quantitative real-time polymerase chain reaction. An induction of DNA damage was observed, as a consequence of HFD-feeding, whereas EGCG supplementation decreased DNA damage. HFD-feeding induced a higher inflammatory status. Supplementation reversed these effects, resulting in tissue specific gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 1. HFD feeding caused a significant lower bacterial abundance. The Firmicutes/Bacteroidetes ratio is significantly lower in HFD + EGCG but higher in CD + EGCG compared to control groups. The results demonstrate the impact of EGCG on the one hand on gut microbiota which together with dietary components affects host health. On the other hand effects may derive from antioxidative activities as well as epigenetic modifications observed on CpG methylation but also likely to include other epigenetic elements.
Obesity is associated with low-grade inflammation, increased ROS production and DNA damage. Supplementation with antioxidants might ameliorate DNA damage and support epigenetic regulation of DNA repair. C57BL/6J male mice were fed a high-fat (HFD) or a control diet (CD) with and without vitamin E supplementation (4.5 mg/kg body weight (b.w.)) for four months. DNA damage, DNA promoter methylation and gene expression of Dnmt1 and a DNA repair gene (MLH1) were assayed in liver and colon. The HFD resulted in organ specific changes in DNA damage, the epigenetically important Dnmt1 gene, and the DNA repair gene MLH1. Vitamin E reduced DNA damage and showed organ-specific effects on MLH1 and Dnmt1 gene expression and methylation. These results suggest that interventions with antioxidants and epigenetic active food ingredients should be developed as an effective prevention for obesity—and oxidative stress—induced health risks.
The characteristic features of Whipple's disease include abdominal pain, diarrhoea, wasting, and arthralgias, with the causative agent, Tropheryma whipplei, being detected mainly in intestinal biopsies. PCR technology has led to the identification of T. whipplei in specimens from various other locations, including the central nervous system and the heart. T. whipplei is now recognized as one of the causes of culture-negative endocarditis, and endocarditis can be the only manifestation of the infection with T. whipplei. Although it is considered a rare disease, the true incidence of endocarditis due to T. whipplei is not clearly established. With the increasing use of molecular methods, it is likely that T. whipplei will be more frequently identified. Questions also remain about the genetic variability of T. whipplei strains, optimal diagnostic procedures and therapeutic options. In the present study, we provide clinical data on four new patients with documented endocarditis due to T. whipplei in the context of the available published literature. There was no clinical involvement of the gastrointestinal tract. Genetic analysis of the T. whipplei strains with DNA isolated from the excised heart valves revealed little to no genetic variability. In a selected case, we describe acridine orange staining for early detection of the disease, prompting early adaptation of the antibiotic therapy. We provide long-term follow-up data on the patients. In our hands, an initial 2-week course of intravenous antibiotics followed by cotrimoxazole for at least 1 year was a suitable treatment option for T. whipplei endocarditis.
A mother had a child with cirrhosis of the liver and alpha-1-antitrypsin deficiency. In a subsequent pregnancy the fetal phenotype Pi MZ was detected by isoelectrofocusing in the amniotic fluid. Quantitative assay of alpha-1-antitrypsin gave results in the normal range. Umbilical vein blood analysis confirmed the antenatal findings. In this case it has been possible to rule out the disease before birth. In this context the clinical importance of alpha-1-antitrypsin deficiency is stressed, its frequency in the European and North-American population and the prognosis with phenotype Pi Z.
Objective Long‐acting synthetic somatostatin analogues (SSA) are an essential part of the treatment of neuroendocrine neoplasms. We evaluated the chemopreventive effects of a long‐acting somatostatin analogue on the development of pancreatic neuroendocrine neoplasms (pNENs) in a genetically engineered MEN1 knockout mouse model. Materials and methods Heterozygote MEN1 knockout mice were injected every 28 days subcutaneously with the somatostatin analogue lanreotide (Somatuline Autogel©; Ipsen Pharma) or a placebo starting at day 35 after birth. Mice were euthanized after 6, 9, 12, 15 and 18 months, and the size and number of pNENs were measured due histological analysis and compared to the placebo group. Results The median tumor size of pNENs was statistically significantly smaller after 9 (control group vs. SSA group; 706.476 µm2 vs. 195.271 µm2; p = 0.0012), 12 (placebo group vs. SSA group 822.022 vs. 255.482; p ≤ 0.001), 15 (placebo group vs. SSA group 1192.568 vs. 273.533; p ≤ 0.001) and after 18 months (placebo group vs. SSA group 1328.299 vs. 864.587; p ≤ 0.001) in the SSA group. Comparing the amount of tumors in both groups, a significant reduction was achieved in treated Men1(+/−) mice (41%, p = 0.002). Immunostaining showed, however, no significant difference in the expression of the apoptosis marker caspase‐3, but a significant difference in Ki67 index as a marker for tumor cell proliferation (p ≤ 0.005). Conclusion Long‐acting somatostatin analogues may be an effective chemopreventive approach to delay the progression of MEN1‐associated pNENs. After our preclinical results, we would recommend to evaluate the effects of long‐acting SSA in a prospective clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.