The FGF receptor Heartless (HTL) is required for mesodermal cell migration in the Drosophila gastrula. We show that mesoderm cells undergo different phases of specific cell shape changes during mesoderm migration. During the migratory phase, the cells adhere to the basal surface of the ectoderm and exhibit extensive protrusive activity. HTL is required for the protrusive activity of the mesoderm cells. Moreover, the early phenotype of htl mutants suggests that HTL is required for the adhesion of mesoderm cells to the ectoderm.In a genetic screen we identified pebble (pbl) as a novel gene required for mesoderm migration. pbl encodes a guanyl nucleotide exchange factor (GEF) for RHO1 and is known as an essential regulator of cytokinesis. We show that the function of PBL in cell migration is independent of the function of PBL in cytokinesis. Although RHO1 acts as a substrate for PBL in cytokinesis, compromising RHO1 function in the mesoderm does not block cell migration. These data suggest that the function of PBL in cell migration might be mediated through a pathway distinct from RHO1. This idea is supported by allele-specific differences in the expressivity of the cytokinesis and cell migration phenotypes of different pbl mutants. We show that PBL is autonomously required in the mesoderm for cell migration. Like HTL, PBL is required for early cell shape changes during mesoderm migration. Expression of a constitutively active form of HTL is unable to rescue the early cellular defects in pbl mutants, suggesting that PBL is required for the ability of HTL to trigger these cell shape changes. These results provide evidence for a novel function of the Rho-GEF PBL in HTL-dependent mesodermal cell migration.
The karyotype of the eutardigrade Milnesium tardigradum Doyère, 1840 from a parthenogenetic population is described for the first time. Mitotic cells prepared from early developmental stages revealed ten more or less rod-shaped telocentric chromosomes. Chromosomes are not uniform in size, and differ in length depending on the developmental stage and in compactness, i.e. namely the chromosomes in metaphase exhibit a polymorphic appearance in size and staining intensity. One pair of chromosomes is characteristic in most metaphases. Here, each chromosome is either nearly twice as long as the others or both can be observed as the densest chromatin. The diploid chromosome number of 2 n = 10 corresponds very well to that known from many other eutardigrades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.