lm7h@bio.7u.nl).Nutrient resorption is an important process during leaf senescence, which helps plants to minimize nutrient losses. To quantify nutrient resorption, the parameter resorption efficiency is commonly used. This parameter describes the percentage of the nutrient pool withdrawn before leaf abscission. The nutrient pool is generally expressed on the basis of leaf mass or leaf area, assuming that these bases do not change during senescence. In this paper we firstly present a mathematical formula describing the effect of change in measurement basis on the difference between the real resorption efficiency (RRE) value and the measured resorption efficiency (MRE). This formula shows that even moderate senescence-related changes in a measurement basis can lead to considerable underestimation of RRE. Secondly, to estimate the general change in measurement basis we quantified leaf mass loss and leaf shrinkage during senescence from literature data. These data shows that mass loss percentages can be as high as 40%, and leaf shrinkage can be up to 20%. This level of change in basis seriously compromises the MRE when not corrected for. Using our formula and the reported average literature values of changes in leaf mass (21%) and leaf shrinkage (11%) during senescence, we calculated that the average RRE for nitrogen and phosphorous of terrestrial plants is 6% (leaf area) to 10% (leaf mass) higher than the 50%, respectively 52% as reported by Aerts (1996). This implies that nutrient resorption from senescing leaves is even more important for nutrient retention in terrestrial plants than thought so far. We advocate that preselecting leaves and monitoring the measurement basis throughout the duration of the experiment should minimize the difference between MRE and RRE.
Summary1 Plant growth at high-latitude sites is usually strongly nutrient-limited. The increased nutrient availability predicted in response to global warming may affect internal plant nutrient cycling, including nutrient resorption from senescing leaves. ) on nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species, belonging to four different growth-forms, was studied in northern Sweden. 3 We hypothesized that while increased N supply would not affect N or P resorption efficiency, it would lead to lower N resorption proficiency (higher N concentrations in leaf litter) and higher P resorption proficiency (lower P concentrations in leaf litter). We also investigated whether the basis on which resorption was expressed (leaf mass, leaf area or unit leaf) influenced the patterns observed. 4 Contrasting with our hypothesis, a general trend of decreased N resorption efficiency occurred in response to increased N supply, but the expected decrease in N resorption proficiency was seen in all species except Betula nana . 5 P resorption efficiency did not change in four species ( B. nana , Empetrum hermaphroditum , Eriophorum vaginatum and Rubus chamaemorus ) but it decreased in Andromeda polifolia , and increased in Vaccinium uliginosum . P resorption proficiency showed the expected increase in only two species ( B. nana and V. uliginosum ). 6 Apart from P resorption efficiency, the different calculation methods generally produced similar responses of resorption efficiency and proficiency to N supply. 7 Increased N supply at high-latitude sites clearly leads to more N being returned to the soil through leaf litter production. However, decomposition of such litter will probably become P-limited. 8 Considerable interspecific differences in nutrient resorption proficiency were found, indicating that long-term changes in vegetation composition need to be considered when evaluating plant-mediated effects on ecosystem nutrient cycling in response to increased nutrient supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.