Microbes often secrete high levels of quorum sensing (QS) autoinducers into the environment to coordinate gene expression and biofilm formation, but risk detection and subsequent predation by bacterivorous predators. With such prominent signaling molecules acting as chemoattractants that diffuse into the environment at alarmingly high concentrations, it is unclear if bacterial cells can mask their chemical trails from predator detection. Here, we describe a microbial-based anti-detection adaptation, termed as “biofilm cloak”, where the biofilm prey produced biofilm matrix exopolysaccharides that “locked” and reduced the leaching of autoinducers into the milieu, thereby concealing their trails to the detection by the bacterivorous Caenorhabditis elegans nematode. The exopolysaccharides act as common good for the non-producers to hide their autoinducers from predator detection. Deficiency in chemosensory gene odr-10 in mutant animals abrogated their ability to detect autoinducers and migrate toward their prey in a directed manner, which led to lower population growth rate of animals. Hence, restriction of bacterial communication activities to the confinements of biofilms is a novel approach for predator evasion, which plays a fundamental role in shaping ecological dynamics of microbial communities and predator-prey interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.