Smad proteins play a key role in the intracellular signalling of transforming growth factor β (TGFβ), which elicits a large variety of cellular responses. Upon TGFβ receptor activation, Smad2 and Smad3 become phosphorylated and form heteromeric complexes with Smad4. These complexes translocate to the nucleus where they control expression of target genes. However, the mechanism by which Smads mediate transcriptional regulation is largely unknown. Human plasminogen activator inhibitor-1 (PAI-1) is a gene that is potently induced by TGFβ. Here we report the identification of Smad3/Smad4 binding sequences, termed CAGA boxes, within the promoter of the human PAI-1 gene. The CAGA boxes confer TGFβ and activin, but not bone morphogenetic protein (BMP) stimulation to a heterologous promoter reporter construct. Importantly, mutation of the three CAGA boxes present in the PAI-1 promoter was found to abolish TGFβ responsiveness. Thus, CAGA elements are essential and sufficient for the induction by TGFβ. In addition, TGFβ induces the binding of a Smad3/Smad4-containing nuclear complex to CAGA boxes. Furthermore, bacterially expressed Smad3 and Smad4 proteins, but not Smad1 nor Smad2 protein, bind directly to this sequence in vitro. The presence of this box in TGFβ-responsive regions of several other genes suggests that this may be a widely used motif in TGFβ-regulated transcription.
Hedgehog (Hh) and transforming growth factor-B (TGF-B) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF
Melanoma represents approximately 4% of human skin cancers, yet accounts for approximately 80% of deaths from cutaneous neoplasms (1). Although progress has been made in understanding the genetics of the molecular events underlying melanoma oncogenesis (2-4), the clinical challenge remains enormous. A genetic hallmark of melanoma is the presence of activating mutations in the oncogenes BRAF and NRAS, which are present in 70% and 15% of melanomas, respectively, and lead to constitutive activation of mitogen-activated protein kinase pathway signaling (3,5). However, molecules that inhibit mitogen-activated protein kinase pathway-associated kinases, like BRAF and MEK, have shown only limited efficacy in the treatment of metastatic melanoma (6). Thus, a deeper understanding of the cross talk between signaling networks and the complexity of melanoma progression should lead to more effective therapy.Hedgehog (HH) signaling is controlled at the cell surface by two transmembrane proteins, the tumor suppressor Patched-1 (PTCH1), which acts as a HH receptor, and the oncoprotein Smoothened (SMO). In the absence of HH, PTCH1 maintains SMO in an inactive state. In the presence of any of the three HH ligands (Sonic, Indian, or Desert HH), inhibition of SMO by PTCH1 is alleviated and a signal is transduced that leads to the nuclear translocation and activation of GLI family transcription factors (7,8). GLIs are often overexpressed in cancers and contribute to the progression of a variety of neoplasms via regulation of cell cycle progression and apoptosis (9,10). One recent study (11) Article
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.