Homeodomain-containing proteins regulate, as transcription factors, the coordinated expression of genes involved in development, differentiation, and malignant transformation. We report here the molecular cloning of a mutated HOXB7 transcript encoding a truncated homeodomain-containing protein in MCF7 cells. This is a new example of mutation affecting the coding region of a HOX gene. In addition, we detected two HOXB7 transcripts in several breast cell lines and demonstrated that both normal and mutated alleles were expressed at the RNA level in MCF7 cells as well as in a variety of breast tissues and lymphocytes, suggesting that a truncated HOXB7 protein might be expressed in vivo. Using transient co-transfection experiments, we demonstrated that both HOXB7 proteins can activate transcription from a consensus HOX binding sequence in breast cancer cells. Our results provide evidence that HOXB7 protein has transcription factor activity in vivo and that the two last amino acids do not contribute to this property.
Three distinct genes encode an identical calmodulin protein in mammalian cells. In addition, multiple mRNA transcripts, with approximate sizes of 1.6 kb and 4.4 kb, are visualized on Northern blots hybridized to calmodulin-I cDNA probes. To elucidate the mechanism generating multiple calmodulin mRNAs, the complete sequence of the 4194 base human calmodulin-I mRNA was determined from cDNA clones and 3' rapid amplification of complementary ends (3' RACE). The 5' untranslated region of calmodulin-I mRNA contains a GC-rich domain containing multiple repeats of GGC interrupted by a GCA sequence, as well as a tandem repeat sequence of eight GCA triplets. The 3' untranslated region of calmodulin-I mRNA contains two canonical and one aberrant (ATTAAA) polyadenylation signal, consistent with the sizes of 1.6 kb and 4.4 kb mRNAs visualized on Northern blots, and a potential minor 4.2 kb mRNA detected by 3' RACE. Hybridization experiments using specific probes upstream and downstream of the polyadenylation signals demonstrated that alternate use of polyadenylation signals is the molecular mechanism for multiple calmodulin-I mRNA transcripts in human cells. Thirteen adenine rich elements with the motif AUUUA were detected in the 3' untranslated region. Three such motifs are embedded in regions that are conserved with the rat 3' untranslated region of calmodulin-I mRNA. One of these is surrounded by an adenine-uridine rich region that can form an 11-base pair stem structure. We propose that sequences in the 3' untranslated region of calmodulin-I mRNA may play a role in the regulation of calmodulin expression.
Homeodomain-containing proteins regulate, as transcription factors, the coordinated expression of genes involved in development, differentiation, and malignant transformation. We report here the molecular cloning of a mutated HOXB7 transcript encoding a truncated homeodomain-containing protein in MCF7 cells. This is a new example of mutation affecting the coding region of a HOX gene. In addition, we detected two HOXB7 transcripts in several breast cell lines and demonstrated that both normal and mutated alleles were expressed at the RNA level in MCF7 cells as well as in a variety of breast tissues and lymphocytes, suggesting that a truncated HOXB7 protein might be expressed in vivo. Using transient co-transfection experiments, we demonstrated that both HOXB7 proteins can activate transcription from a consensus HOX binding sequence in breast cancer cells. Our results provide evidence that HOXB7 protein has transcription factor activity in vivo and that the two last amino acids do not contribute to this property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.