Physiologically in the brain, cytokines such as tumor necrosis factor-alpha (TNalpha) are released by the immune system and can modulate neurological responses. Conversely, the central nervous system (CNS) is also able to modulate cytokine production. In the case of CNS disorders, cytokine release may be modified. Cerebral malaria (CM) is a complication of Plasmodium falciparum infection in humans and is characterized by a reversible encephalopathy with seizures and loss of consciousness. Central clinical signs are partly due to sequestration of parasitized red blood cells in the brain microvasculature due to interactions between parasite proteins and adhesion molecules. TNFalpha is produced and released by host cells following exposure to various malarial antigens. The increase of TNFalpha release is responsible for the overexpression of adhesion molecules. This article reviews the involvement of TNFalpha in cerebral malaria and the relation with all the processes involved in this pathology. It shows that (i). TNFalpha levels are increased in plasma and brain but with no clear correlation between TNFalpha levels and occurrence and severity of CM; (ii). TNFalpha is responsible for intercellular adhesion molecule-1 upregulation in CM, the relation being less clear for other adhesion molecules; (iii). TNFalpha receptors are upregulated in CM, with TNF receptor 2 (TNFR2) showing a higher upregulation than TNFR1 in vivo; (iv). in murine CM, low doses of TNFalpha seem to protect from CM, whereas excess TNFalpha induces CM and anti-TNFalpha therapies (antibodies, pentoxifylline) did not show any efficiency in protection from CM. Moreover, the involvement of lymphotoxin a, which shares with TNFalpha the same receptors with similar affinity, appears to be an interesting target for further investigation.
1 Mefloquine is a chiral neurotoxic antimalarial agent showing stereoselective brain uptake in humans and rats. It is a substrate and an inhibitor of the efflux protein P-glycoprotein. 2 We investigated the stereoselective uptake and efflux of mefloquine in mice, and the consequences of the combination with an efflux protein inhibitor, elacridar (GF120918) on its brain transport. 3 Racemic mefloquine (25 mg kg À1 ) was administered intraperitoneally with or without elacridar (10 mg kg À1 ). Six to seven mice were killed at each of 11 time-points between 30 min and 168 h after administration. Blood and brain concentrations of mefloquine enantiomers were determined using liquid chromatography. 4 A three-compartment model with zero-order absorption from the injection site was found to best represent the pharmacokinetics of both enantiomers in blood and brain. (À)Mefloquine had a lower blood and brain apparent volume of distribution and a lower efflux clearance from the brain, resulting in a larger brain/blood ratio compared to ( þ )mefloquine. Elacridar did not modify blood concentrations or the elimination rate from blood for either enantiomers. However, cerebral AUC inf of both enantiomers were increased, with a stronger effect on ( þ )mefloquine. The efflux clearance from the brain decreased for both enantiomers, with a larger decrease for ( þ )mefloquine. 5 After administration of racemic mefloquine in mice, blood and brain pharmacokinetics are stereoselective, ( þ )mefloquine being excreted from brain more rapidly than its antipode, showing that mefloquine is a substrate of efflux proteins and that mefloquine enantiomers undergo efflux in a stereoselective manner. Moreover, pretreatment with elacridar reduced the brain efflux clearances with a more pronounced effect on ( þ )mefloquine.
Cerebral malaria (CM) is the most severe complication of Plasmodium falciparum malaria. The aim of this study was to investigate the influence of CM on the cerebral uptake of mefloquine (MQ), in an experimental model of mice infected with Plasmodium berghei ANKA (PbA). Drug diffusion in brain is closely related to efflux pumps such as P-glycoprotein (P-gp/ABCB1/MDR1) and Breast Cancer Resistant Protein (BCRP/ABCG2), two major components of the blood-brain barrier (BBB) which can be modified by inflammation and/or infection. After a single IP dose, MQ concentrations were measured by liquid chromatography in blood and brains of mice infected with Plasmodium berghei ANKA and compared with that of non-infected mice. Our results show that MQ brain concentrations were decreased in CM mice versus healthy mice (0.77 versus 1.31 for brain/plasma concentrations). Although MQ is transported out of endothelial cells by P-glycoprotein, this result cannot be related to this transporter as we have previously shown that CM does not alter P-gp function (personal data). CM induces a reduction of MQ brain transport and, therefore, an increase of central toxicity due to MQ should not be expected during CM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.