Genomic drift affects the functional properties of cell lines, and the reproducibility of data from in vitro studies. While chromosomal aberrations and mutations in single pivotal genes are well explored, little is known about effects of minor, possibly pleiotropic, genome changes. We addressed this question for the human dopaminergic neuronal precursor cell line LUHMES by comparing two subpopulations (SP) maintained either at the American-Type-Culture-Collection (ATCC) or by the original provider (UKN). Drastic differences in susceptibility towards the specific dopaminergic toxicant 1-methyl-4-phenylpyridinium (MPP+) were observed. Whole-genome sequencing was performed to identify underlying genetic differences. While both SP had normal chromosome structures, they displayed about 70 differences on the level of amino acid changing events. Some of these differences were confirmed biochemically, but none offered a direct explanation for the altered toxicant sensitivity pattern. As second approach, markers known to be relevant for the intended use of the cells were specifically tested. The “ATCC” cells rapidly down-regulated the dopamine-transporter and tyrosine-hydroxylase after differentiation, while “UKN” cells maintained functional levels. As the respective genes were not altered themselves, we conclude that polygenic complex upstream changes can have drastic effects on biochemical features and toxicological responses of relatively similar SP of cells.Electronic supplementary materialThe online version of this article (10.1007/s00204-018-2326-5) contains supplementary material, which is available to authorized users.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
It is commonly expected that exotic plants experience reduced herbivory, but experimental evidence for such enemy release is still controversial. One reason for conflicting results might be that community context has rarely been accounted for, although the surrounding plant diversity may moderate enemy release. Here, we tested the effects of focal tree origin and surrounding tree diversity on herbivore abundance and leaf damage in a cross‐Atlantic tree‐diversity experiment in Canada and Germany. We evaluated six European tree species paired with six North American congeners in both their native and exotic range, expecting lower herbivory for the exotic tree species in each pair at each site. Such reciprocal experiments have long been called for, but have not been realized thus far. In addition to a thorough evaluation of overall enemy release effects, we tested whether enemy release effects changed with the surrounding tree diversity. Herbivore abundance was indeed consistently lower on exotics across all six tree genera (12 comparisons). This effect of exotic status was independent of the continent, phylogenetic relatedness, and surrounding tree diversity. In contrast, leaf damage associated with generalist leaf chewers was consistently higher on North American tree species. Interestingly, several species of European weevils were the most abundant leaf chewers on both continents and the dominant herbivores at the Canadian site. Thus, most observed leaf damage is likely to reflect the effect of generalist herbivores that feed heavily on plant species with which they have not evolved. At the German site, sap suckers were the dominant herbivores and showed a pattern consistent with enemy release. Taken together, the consistently lower herbivory on exotics on both continents is not purely a pattern of enemy release in the strictest sense, but to some degree additionally reflects the susceptibility of native plants to invasive herbivores. In conclusion, our cross‐Atlantic study is consistent with the idea that nonnative trees have generally reduced herbivory, regardless of tree community diversity and species identity, but for different reasons depending on the dominant herbivore guild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.