The ability to process microbial antigens and present them at the surface of cells is an important aspect of our innate ability to clear infections. It is generally accepted that antigens in the cytoplasm are loaded in the endoplasmic reticulum and presented at the cell surface on major histocompatibility complex (MHC) class I molecules, whereas peptides present in endo/phagocytic compartments are presented on MHC class II molecules. Despite the apparent segregation of the class I and class II pathways, antigens from intracellular pathogens including mycobacteria, Escherichia coli, Salmonella typhimurium, Brucella abortus and Leishmania, have been shown to elicit an MHC class-I-dependent CD8+ T-cell response, a process referred to as cross-presentation. The cellular mechanisms allowing the cross-presentation pathway are poorly understood. Here we show that phagosomes display the elements and properties needed to be self-sufficient for the cross-presentation of exogenous antigens, a newly ascribed function linked to phagocytosis mediated by the endoplasmic reticulum.
Innate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a synthetic hexaacylated lipid A derivative, denoted as glucopyranosyl lipid adjuvant (GLA). We assessed the effects of GLA on murine and human dendritic cells (DC) by combining microarray, mRNA and protein multiplex assays and flow cytometry analyses. We demonstrate that GLA has multifunctional immunomodulatory activity similar to naturally-derived monophosphory lipid A (MPL) on murine DC, including the production of inflammatory cytokines, chemokines, DC maturation and antigen-presenting functions. In contrast, hexaacylated GLA was overall more potent on a molar basis than heterogeneous MPL when tested on human DC and peripheral blood mononuclear cells (PBMC). When administered in vivo, GLA enhanced the immunogenicity of co-administered recombinant antigens, producing strong cell-mediated immunity and a qualitative TH1 response. We conclude that the GLA adjuvant stimulates and directs innate and adaptive immune responses by inducing DC maturation and the concomitant release of pro-inflammatory cytokines and chemokines associated with immune cell trafficking, activities which have important implications for the development of future vaccine adjuvants.
Standard murine models of cutaneous leishmaniasis, involving s.c. inoculation of large numbers of Leishmania major promastigotes, have not supported an essential role for CD8+ T cells in the control of primary infection. Recently, a L. major model combining two main features of natural transmission, low parasite dose and inoculation into a dermal site, has been established in resistant C57BL/6 mice. In the present studies, C57BL/6 mice with CD8+ T cell deficiencies, including CD8−/− and CD8-depleted mice, failed to control the growth of L. major following inoculation of 100 metacyclic promastigotes into the ear dermis. The resulting dermal pathology was minor and delayed. Lesion formation in wild-type mice was coincident with the killing of parasites in the inoculation site. Both events were associated with the accumulation of CD8+ T lymphocytes in the skin and with the capacity of CD8+ T cells recovered from draining lymph nodes or infected dermis to release IFN-γ following coculture with infected dendritic cells. Reconstitution of resistance to L. major in RAG−/− mice using T cells from naive donors was optimal when both CD4+ and CD8+ T cells were transferred. Primed CD8+ T lymphocytes obtained from C57BL/6 mice during the acute stage of infection were able to mediate both pathology and immunity when transferred alone. The low dose, intradermal challenge model reveals that CD8+ T cells play an essential role in both pathogenesis of and immunity to primary infection with L. major in the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.