In plants, organs are inter-dependent for growth and development. Here, we aimed to investigate the distance at which interaction between organs operates and the relative contribution of within-tree variation in carbohydrate and hormonal contents on floral induction and fruit growth, in a fruit tree case study. Manipulations of leaf and fruit numbers were performed in two years on “Golden delicious” apple trees, at the shoot or branch scale or one side of Y-shape trees. For each treatment, floral induction proportion and mean fruit weight were recorded. Gibberellins content in shoot apical meristems, photosynthesis, and non-structural carbohydrate concentrations in organs were measured. Floral induction was promoted by leaf presence and fruit absence but was not associated with non-structural content in meristems. This suggests a combined action of promoting and inhibiting signals originating from leaves and fruit, and involving gibberellins. Nevertheless, these signals act at short distance only since leaf or fruit presence at long distances had no effect on floral induction. Conversely, fruit growth was affected by leaf presence even at long distances when sink demands were imbalanced within the tree, suggesting long distance transport of carbohydrates. We thus clarified the inter-dependence and distance effect among organs, therefore their degree of autonomy that appeared dependent on the process considered, floral induction or fruit growth.
In plants, carbon source-sink relationships are assumed to affect their reproductive effort. In fruit trees, carbon source-sink relationships are likely to be involved in their fruiting behavior. In apple, a large variability in fruiting behaviors exists, from regular to biennial, which has been related to the within-tree synchronization vs desynchronization of floral induction in buds. In this study, we analyzed if carbon assimilation, availability and fluxes as well as shoot growth differ in apple genotypes with contrasted behaviors. Another aim was to determine the scale of plant organization at which growth and carbon balance are regulated. The study was carried out on 16 genotypes belonging to three classes: (i) biennial, (ii) regular with a high production of floral buds every year and (iii) regular, displaying desynchronized bud fates in each year. Three shoot categories, vegetative and reproductive shoots with or without fruits, were included. This study shows that shoot growth and carbon balance are differentially regulated by tree and shoot fruiting contexts. Shoot growth was determined by the shoot fruiting context, or by the type of shoot itself, since vegetative shoots were always longer than reproductive shoots whatever the tree crop load. Leaf photosynthesis depended on the tree crop load only, irrespective of the shoot category or the genotypic class. Starch content was also strongly affected by the tree crop load with some adjustments of the carbon balance among shoots since starch content was lower, at least at some dates, in shoots with fruits compared with the shoots without fruits within the same trees. Finally, the genotypic differences in terms of shoot carbon balance partly matched with genotypic bearing patterns. Nevertheless, carbon content in buds and the role of gibberellins produced by seeds as well as the distances at which they could affect floral induction should be further analyzed.
Photosynthetic carbon assimilation rates are highly dependent on environmental factors such as light availability and on metabolic limitations such as the demand for carbon by sink organs. The relative effects of light and sink demand on photosynthesis in perennial plants such as trees remain poorly characterised. The aim of the present study was therefore to characterize the relationships between light and fruit load on a range of leaf traits including photosynthesis, nonstructural carbohydrate (NSC) contents, leaf structure and nitrogen-related variables in fruiting (‘ON’) and nonfruiting (‘OFF’) ‘Golden Delicious’ apple trees. We show that crop status (at the tree scale) exerts a greater influence over leaf traits than the local light environment, or the local fruit load. High rates of photosynthesis were observed in the ON trees. This was correlated with a high leaf nitrogen content. In contrast, little spatial variability in photosynthesis rates was observed in the OFF trees. The lack of variation in photosynthesis rates was associated with high leaf NSC contents at the tree level. Taken together, these results suggest that low carbon demand leads to feedback limitations on photosynthesis resulting in a low level of within-tree variability. These findings provide new insights into carbon and nitrogen allocations within trees that are heavily dependent on carbon demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.