Abstract-Research in automatic analysis of sign language has largely focused on recognizing the lexical (or citation) form of sign gestures as they appear in continuous signing, and developing algorithms that scale well to large vocabularies. However, successful recognition of lexical signs is not sufficient for a full understanding of sign language communication. Nonmanual signals and grammatical processes which result in systematic variations in sign appearance are integral aspects of this communication but have received comparatively little attention in the literature. In this survey, we examine data acquisition, feature extraction and classification methods employed for the analysis of sign language gestures. These are discussed with respect to issues such as modeling transitions between signs in continuous signing, modeling inflectional processes, signer independence, and adaptation. We further examine works that attempt to analyze nonmanual signals and discuss issues related to integrating these with (hand) sign gestures. We also discuss the overall progress toward a true test of sign recognition systems-dealing with natural signing by native signers. We suggest some future directions for this research and also point to contributions it can make to other fields of research. Web-based supplemental materials (appendicies) which contain several illustrative examples and videos of signing can be found at www.computer.org/publications/dlib.
Partially observable Markov decision processes (POMDPs) provide a principled, general framework for robot motion planning in uncertain and dynamic environments. They have been applied to various robotic tasks. However, solving POMDPs exactly is computationally intractable. A major challenge is to scale up POMDP algorithms for complex robotic tasks.Robotic systems often have mixed observability: even when a robot's state is not fully observable, some components of the state may still be so. We use a factored model to represent separately the fully and partially observable components of a robot's state and derive a compact lower-dimensional representation of its belief space. This factored representation can be combined with any point-based algorithm to compute approximate POMDP solutions. Experimental results show that on standard test problems, our approach improves the performance of a leading point-based POMDP algorithm by many times.
Abstract. We present an algorithmic approach for integrated learning and planning in predictive representations. The approach extends earlier work on predictive state representations to the case of online exploration, by allowing exploration of the domain to proceed in a goal-directed fashion and thus be more efficient. Our algorithm interleaves online learning of the models, with estimation of the value function. The framework is applicable to a variety of important learning problems, including scenarios such as apprenticeship learning, model customization, and decisionmaking in non-stationary domains.
Abstract-Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework for motion planning of autonomous robots in uncertain and dynamic environments. They have been successfully applied to various robotic tasks, but a major challenge is to scale up POMDP algorithms for more complex robotic systems. Robotic systems often have mixed observability: even when a robot's state is not fully observable, some components of the state may still be fully observable. Exploiting this, we use a factored model to represent separately the fully and partially observable components of a robot's state and derive a compact lowerdimensional representation of its belief space. We then use this factored representation in conjunction with a point-based algorithm to compute approximate POMDP solutions. Separating fully and partially observable state components using a factored model opens up several opportunities to improve the efficiency of point-based POMDP algorithms. Experiments show that on standard test problems, our new algorithm is many times faster than a leading point-based POMDP algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.